
Extracting High-Level Information from Location Data:
The W4 Diary Example

Gabriella Castelli & Marco Mamei & Alberto Rosi &
Franco Zambonelli

Published online: 25 September 2008
Springer Science + Business Media, LLC 2008

Abstract Services for mobile and pervasive computing
should extensively exploit contextual information both to
adapt to user needs and to enable autonomic behavior. To
fulfill this idea it is important to provide two key tools: a
model supporting context-data representation and manipu-
lation, and a set of algorithms relying on the model to
perform application tasks. Following these lines, we first
describe the W4 context model showing how it can
represent a simple yet effective framework to enable
flexible and general-purpose management of contextual
information. In particular, we show the model suitability in
describing user-centric situations, e.g., describing situations
in terms of where a user is located and what he is doing.
Then, we illustrate a set of algorithms to semantically
enrich W4 represented data and to extract relevant
information from it. In particular, starting from W4 data,
such algorithms are able to identify the places that matter to
the user and to describe them semantically. Overall, we
show how the context-model and the algorithms allow to
create an high-level, semantic and context-aware diary-
based service. This service meaningfully collects and
classifies the user whereabouts and the places that the user
visited.

Keywords pervasive computing . context-awareness .

W4model . knowledge engineering location-aware services .

localization algorithms

1 Introduction

Pervasive computing scenarios comprise a huge number of
heterogeneous devices interacting with each other to
achieve complex distributed applications. Sensor networks
and networks of mobile devices could be employed in a
variety of applications including environmental monitoring
[1, 22, 26] navigation, and human interaction [24]. One
central problem underlying such applications is how to
obtain a useful representation of the environment surround-
ing the system, and how to interpret and understand such a
representation to influence the application-level business
logic.

In fact, while advances in hardware technologies (e.g.,
smart phones, wireless sensors and RFID tags) are making
possible and economically feasible to collect a vast amount
of information about the system context, it is still very
difficult to organize and aggregate all the collected
information in a coherent and usable representation. In
other words there is a huge gap between low-level sensor
readings and high-level “situation awareness” [23].

Accordingly, pervasive and autonomic services should
evolve from a simple model of “context-awareness”, in
which they access isolated pieces of heterogeneous
contextual data and are directly in charge of digesting
and understanding them, towards a model of “situation-
awareness”, in which services access properly structured
and organized information reflecting comprehensive
contextual knowledge related to a “situation” of interest
and which can be exploited in a standardized way. The

Mobile Netw Appl (2009) 14:107–119
DOI 10.1007/s11036-008-0104-y

G. Castelli :M. Mamei (*) :A. Rosi : F. Zambonelli
Dipartimento di Scienze e Metodi dell’Ingegneria,
Università di Modena e Reggio Emilia,
Via Amendola 2,
42100 Reggio Emilia, Italy
e-mail: marco.mamei@unimore.it

G. Castelli
e-mail: gabriella.castelli@unimore.it

A. Rosi
e-mail: alberto.rosi@unimore.it

F. Zambonelli
e-mail: franco.zambonelli@unimore.it

result is that services can reach, with reduced compu-
tational and communication efforts, a comprehensive
understanding of “situations” around and, consequently,
a higher-degree of adaptability and flexibility, with the
notable software engineering advantage of enforcing a
sharp separation of concerns between context exploita-
tion and context management.

To tackle the above problems and create effective
context-aware services, two main tools are necessary:

1. A context model offering a principled and general-purpose
way to encode and manipulate context information

2. A set of algorithms to extract practically usable
information from low-level and sparse context data

In this paper we present our contribution to these
research challenges:

1. We propose a simple model to represent contextual
information about the physical world, for the use of
both users’ querying activities and context-aware
services. The model, which we call “W4”, is based on
the consideration that most information about the world
can be simply represented in terms of four “W”s—
Who, What, Where, When—and that such a represen-
tation enables for very expressive, and flexible data
usages in a variety of pervasive and mobile computing
scenarios.

2. We propose a number of algorithms to enrich W4
information with semantic data and to extract higher-
level patterns from that. In particular, starting from a
collection of W4 information representing the user
whereabouts, the algorithms we developed identify
relevant places, enrich their description with Web-based
information, and classify them semantically in an
unsupervised way.

The combination of the above two instruments allows to
create a diary-like application running on a GPS-equipped
handheld device. The application records the list of relevant
places visited by the user in terms of W4 information, and
use the identified algorithms to extract high-level informa-
tion about. The result is a W4-based diary describing the
user daily life and that could be used either as a stand-alone
application allowing a user to browse through his past
locations, or as a supporting tool for other applications that
could take advantage of the recorded data.

From a general perspective the W4 model and the
algorithms to extract high-level context data from locations
can be regarded as sorts of middleware-level infrastructures
to support location-aware mobile services. While most of
the proposed middleware infrastructures focus on “low-
level” issues, like communication and interaction among
nodes, the W4 model and our algorithms focus on high-
level issues such as context-representation and its under-

standing (e.g., how to represent information about the
places, what are the places that matter to the users, what
they mean to them). Such kind of infrastructures will
become more and more important in the future. As context
information will become more detailed and relevant, there
will be the need of managing them at the middleware level,
providing application with a pre-digested and understand-
able view of such data [7].

The remainder of this paper is organized as follow.
Section 2 presents the W4 model showing how it can be
used both to represent and then retrieve context informa-
tion. Section 3 presents the algorithms that we used to
extract higher-level information from W4 location data and
describes how the algorithms can be combined in a W4
diary application. Section 4 presents experiments and
discusses performance of our implementation. Section 5
presents related work. Section 6 discusses areas for future
work and concludes.

2 The W4 context model

The W4 model starts from the consideration that, in a large
set of application scenarios, both elementary and higher-
level context information represent a “fact” which has
occurred in the world. Accordingly, our proposal simply
accounts that any of such facts—and therefore any data/
knowledge information—can be expressed by means of
simple yet expressive four-fields tuples (Who, What,
Where, When): “someone or something (Who) does/did
some activity (What) in a certain place (Where) at a specific
time (When)”.

W4 tuples may be created by proper software agents
associated to data sources or sensors. Their four-fields
structure is flexible and general enough to uniformly deal
with information coming from sources as diverse as
embedded devices, cameras, users, Web 2.0 sites (e.g.,
Twitter), and can easily account for incomplete information
(i.e., some of the four fields being unspecified). W4 tuples
can be stored in suitable shared data spaces, whatever
distributed and implemented. Users and services, from
everywhere, can retrieve tuples via a simple API, based on
Linda-like pattern-matching query mechanisms [2]. Such
API supports context-aware queries and incomplete infor-
mation, to enable services to possibly interact with each
other and to enforce autonomic and context-aware func-
tionalities (see Fig. 1).

2.1 Data representation

The four-fields (Who, What, Where, When) of the W4 data
model each describes a different aspect of a contextual fact.

108 Mobile Netw Appl (2009) 14:107–119

& The “Who” field associates a subject to a fact, and may
represent a human person (e.g., a username) or an
unanimated part of the context acting as a data source
(e.g., the ID of an RFID tag). The Who field is
represented by a type-value pair, in the form of a string,
with an associated namespace that defines the “type” of
the entity that is represented. For example, valid entries
for this field are: “person:Marco”, “tag:tag#567”.

& The “What” field describes the activity performed by
the subject. This information can either come directly
from the data source (e.g., a sensor is reading a
temperature value), or be inferred from other context
parameters (e.g., an accelerometer on a PDA can reveal
that the user is running), or it can be explicitly supplied
by the user (e.g., via the use of Web 2.0 sites like
Twitter). This field is represented as a string containing
a predicate:complement statement. For example, valid
entries for the What field are: “read:book”, “work:
pervasive computing group”, “read:temperature=23”.

& The “Where” field associates a location to the fact. In
our model the location may be a physical point
represented by its coordinates (longitude, latitude), a
geographic region (we currently adopt the PostGIS
language to describe such regions), or it can also be a

logical place (e.g., the engineering department). In
addition, context-dependent spatial expressions like
“here” or “within:300 m” can be used for context-
aware querying, as described in the following of this
section.

& The “When” field associates a time or a time range to a
fact. This may be an exact time/time range (e.g., “2006/
07/19:09.00 A.M.–2006/07/19:10.00 A.M.”), or a concise
description (e.g., 9:28 A.M.). For example 9:28 A.M.=
2006/07/19:9:28 A.M.±5 min. Also in this case, context-
dependent expressions can be defined (e.g., “now”,
“today”, “yesterday”, “before”) and can be used for
context-dependent querying.

The way it structures and organizes information makes
the W4 data model general enough to represent data
concerning several kind of situations and simple enough
to promote ease of management and processing.

2.2 Data access and service engineering

To provide a complete model, it is important to define a
simple API to access contextual knowledge and to enable
data sources and services to inject new data in the system.

Figure 1 W4 general architec-
ture. Different entities in the
data production layer produce
W4 tuples. Services access to
W4 tuples to create context-
aware services. The W4 Context
layer decouples the raw
context data and services

Mobile Netw Appl (2009) 14:107–119 109

As already introduced, W4 tuples are stored in a collection
of shared data spaces. Each data space is intended to
contain a set of logically-related tuples. For example, a data
space might be devoted to store context information related
to a specific geographical area, or describing a situation
according to a specific level of “semantic granularity”.

To define the API reported in Fig. 2, we took inspiration
from tuple-space approaches [2]. A service needs to have a
reference to a tuple space to perform one of the API
operations on it (see Fig. 1).

The inject operation is equivalent to a tuple space “out”
operation: an agent accesses the shared data space to store a
W4 tuple there.

The read operation is used to retrieve tuples from the
data space via querying. A query is represented in its turn
as a W4 tuple with some unspecified or only partly
specified values (i.e., a template tuple). Upon invocation,
the read operation triggers a pattern matching procedure
between the template and the W4 tuples that already
populate the data space. A vector of all matching tuples—
i.e., those for which all the defined fields match those
provided in the template—is returned as the result of the
query. In any case, pattern matching operations work rather
differently from the traditional tuple space model. In fact,
our proposal can rely on the W4 structure to enforce
expressive context-aware pattern matching operations,
which may exploit differentiated mechanisms for the
various W4 fields. Current mechanisms work as follows:

& Who and What. Pattern-matching operations in these
fields are based on string-based regular expressions. For
example, “user:*” will match any user.

& Where. Pattern matching in this field involves spatial
operations inspired by PostGIS operations. Basically,
the template defines a bounding box (e.g., “circle,
center(lonY,latX), radius:500 m”) and everything within
the bounding box matches the template. All tuples with
a Where field within the circle will match this field of
the template. Contextual places such as “within:300 m”
can be specified in the template and are translated into
actual spatial regions—based on the current location
from where the query is performed—before going
through the pattern matching.

& When. In this case, the template defines a time interval.
Everything that happened within that interval matches
the template. Concise time descriptions as well as
contextual ones (e.g., “now” or “before”) are converted
into actual time intervals before pattern matching.

Two simple examples illustrate the querying process. Let
us assume Marco is walking in the campus and wants to
know if some colleagues are near. He will ask (via a read
operation) the query reported in Fig. 3.

Then, he will get in return the tuples representing all the
colleagues of his group currently around (at least, of all
those colleagues having decided to expose themselves via a
W4 tuple).

Similarly, Marco can ask if some of his colleagues have
gone to work in the morning (see Fig. 4)

We emphasize that the returned answers have not to be
“complete” W4 tuples. The pattern matching mechanism
also allows for matches between incomplete information.
Thus, unlike in traditional tuple space approaches, applica-
tions are based on components entering complete and
incomplete context information and getting in response
refined (but possibly still incomplete) information.

2.3 Data generation

In the W4 model, we rely on the reasonable assumption that
software drivers (or, more in general, software agents) are
associated with data sources and are in charge of creating
W4 tuples and inserting them in some sorts of shared data
spaces. In the end, any data source must be somehow
associated with some software to gather and store data
items, W4 agents have the additional goal of collecting all
the necessary information to produce a W4 tuple which is
as accurate and complete as possible. This occurs by
sensing and inferring information from all the devices and
sources available (e.g., RFID tags, GPS devices, Web
services), and by combining them in a W4 tuple. Some
simple examples may clarify this concept.

Let us assume Marco is walking in the campus park.
Agents running on his GPS-equipped PDA, can periodical-
ly create the tuple in Fig. 5.

The Who is entered implicitly by the user at the login,
What and Where can be derived by the GPS (e.g., the speed
of Marco as measured by the GPS can be used to deduce
that he is walking), When can be provided both by the PDA

void inject(W4Tuple a);
W4Tuple[] read(W4Tuple a);

Figure 2 API to inject and read W4 tuples

Who: user:*
What: works:pervasive computing group
Where: circle,center(lonY,latX),radius:500m
When: now

Figure 3 W4 template querying for nearby users working in
pervasive computing group

Who: user:*
What: works:pervasive computing group
Where: office
When: 2006/07/07:00am- 2006/07/13:00am

Figure 4 W4 template querying for users working in pervasive
computing group that were in the office in the morning

110 Mobile Netw Appl (2009) 14:107–119

or by the GPS. Viewing this from a different, more fine-
grained perspective, we can imagine that one agent
controlling the user profile can create a raw W4 tuple in
which only the Who and Where are specified; another agent
controlling the GPS agent create a tuple in which only
Where and What (i.e., the speed) are specified. The
merging of these two raw W4 tuples together can produce
the complete one represented in Fig. 5.

Now, let us assume that a Web service makes available
geocoding information expressed by means of W4 tuples.
For example, the service can produce context information
like the one presented in Fig. 6 where Amendola st. (Who)
is described by a list of longitude and latitude segments
(Where).

The agent running on Marco’s PDA can use both the
data coming from the GPS and the geocoding service to
provide a better localization of Marco. For example, more
expressive localization information can be retrieved by
associating Marco with the closest street segment. So the
resulting tuple describing Marco is the result of the merging
between the previous ones (see Fig. 7).

Concerning this point, it is very important to see that one
of the advantages of the W4 model is to allow the
generation of new W4 tuples on the basis of existing
information. The above example, for instance, shows the
production of higher-level knowledge (the location of the
user expressed by means an address) from lower-level
unrelated information (the location of the user expressed by
means of GPS coordinates and geocoding data). The
obtained new information can be stored in another tuple
space containing such kind of higher-level information.

In conclusion, the W4 model well suits to a number of
pervasive computing scenarios and it can describe a wide
range of context information in a simple yet expressive
way. The W4 model is designed also to offer a simple API
to inject and query W4 information by agents. In addition
the proposed uncoupled interaction mechanism facilitates
the integration between information coming from multiple
sources. For example as will also be detailed in the rest of
the paper, we will present integration between localization
data coming from pervasive devices (e.g., GPS) and Web-

based mapping tools and resources (e.g., geocoders, and
white/yellow page services).

Once the context model and the associated API are
defined, it is possible to create context-aware applications
more efficiently. In the next section we present some
algorithms to extract high-level information from W4 data.

3 Context analysis algorithms

In this section we present a number of context analysis
algorithms we have experimented on the W4 data model.
These algorithms are intended to run on a handheld device
provided with GPS localization, and their goal is to
incrementally extract high-level information from location
data.

At the most basic level, a handheld device connected to a
GPS can run an algorithm that continuously collects and
stores the user locations in terms of longitude and latitude.
Such information ban be easily encoded in terms of W4
tuples and injected in a shared data space for further
processing (see Figs. 8 and 9).

Exploiting this data, another algorithm can access the
W4 repository to incrementally produce more elaborate
context-information. In particular we propose an architec-
ture like the one in Fig. 8 where a number of tuple spaces
store context information at different levels of semantic
abstraction. Each algorithm we developed takes as input the
context representation of the tuple space at one-level below,
performs some inference operations, and injects the result
in the tuple space one-level above.

Although in this paper we will focus only on algorithms to
infer and describe the user location, it is worth reporting that
there exist several algorithms and methods to infer what
activities the user is performing in a given place. This kind of
inference can either involve other sensors (e.g., RFID tags
[25], digital wallets [9], and accelerometers [4]) that try to
capture the signs of the user activity, or it can be possible to
prompt the user asking to annotate what he is currently doing
[30]. In any case, the description of the activity can complete
the “What” field in the W4 tuple describing the user status.

3.1 Extracting places where the user spends his time

Starting from the raw collection of GPS readings, it is
possible to run segmentation and clustering algorithms to
infer the places where the user spends most of his time [13].

Who: st. Amendola
What: null
Where: (lonY1, latX1), (lonY2, latX2), …., (lonYn, latYn)
When: null

Figure 6 Street description by means of W4 information

Who: user:Marco
What: walk:4km/h
Where: st. Amendola
When: 2006/10/17:10.59am

Figure 7 W4 tuple representing the user state from a higher-level
perspective

Who: user:Marco
What: walk:4km/h
Where: lonY, latX
When: 2006/10/17:10.59am

Figure 5 W4 tuple describing user location and activity

Mobile Netw Appl (2009) 14:107–119 111

Following an approach similar to the one proposed in [20,
27], the algorithm tags as relevant those places for which
either one of the following conditions applies:

1. The GPS signal is lost for at least T seconds and it is re-
acquired later on at a distance of less than L meters
from where it was lost. This reflects the situation in
which a user enters a building and leaves it after some
time. Some empirical evaluations let us to set T=
20 min, L=20 m. The constraint on time is important to
wash out GPS signal glitches, the constraint on space is
useful to avoid those situations in which the GPS has
been shut down and the user moves away.

2. The GPS readings over a time window of W seconds
are clustered within a radius of R meters from each
other. This reflects the situation in which the user stays
for a long time in a place like a park or a square. Some
empirical evaluations let us to set W=20 min, R=
100 m.

Who: user:Marco

What: walking

Where: lon = -73.974, lat = 40.763

When: July, 4, 2006, 4:35:00 pm

Who: user:Marco

What: standing

Where: lon = -73.973, lat = 40.766

When: July, 4, 2006, 4:35:10 pm

Who: user:Marco

What: standing

Where: lon = -73.974, lat = 40.765

When: July, 4, 2006, 4:35:20 pm

Figure 9 W4 tuples representing a log of GPS coordinates

Figure 8 The context-analysis
algorithms build on one another
to incrementally extract infor-
mation from the GPS traces. The
information is stored in distinct
W4 tuple spaces. The base level
contains raw information about
the user location. Each algo-
rithm we developed takes as
input the context representation
of the tuple space at one-level
below, performs some inference
operations, and injects the result
in the tuple space at one-level
above

112 Mobile Netw Appl (2009) 14:107–119

The list of relevant places is built online and incremen-
tally. This algorithm receives and inserts events form the
W4 tuple space below, and when a set of coordinates meets
one of the above criteria, the algorithm looks in the list of
the already discovered places for one closer than L=10
meters to the coordinates. If such a place does not exist, a
new place is created and the time of visit is recorded. If the
place exists, the place coordinates are averaged with the new
coordinates, and if enough time has passed since the
previous visit (30 min), the time of the new visit is recorded.

The result of this operation is a list of places described in
terms of longitude and latitude, and a list of time intervals
associated to each of the coordinates indicating when the
user has been there (see Fig. 10).

3.2 Extracting addresses and businesses

A simple list of coordinates is only partially informative
and the need of translating from positions to places (i.e.,
adding semantic meaningful tags to the discovered coor-
dinates) has been widely recognized [12]. Information like
“the user was at home” rather than “the user was at
coordinates (10.873, 44.630)” would be naturally much
more informative and easy to use in context-aware
applications.

A step in the process of adding semantic information
would be to translate from coordinates to addresses. This
can be done via standard tracking and geocoding services
(as common GPS navigators do). In most of the situations
however, because of errors in GPS localization and errors in
the process of segmenting and clustering the GPS readings
to identify relevant places, it will not be possible to identify
the unique address where the user is located, and only a
partial estimate can be given. This second algorithm
produces the place description reported in Fig. 11.

In our implementation, coordinates associated to places
have been translated into addresses using a custom geo-
coding service. Most of the geocoding services available
online (e.g., that provided by the Google Maps API)
translate addresses into coordinates. Instead, to create a
more descriptive W4 diary, we need the reverse operation:
from coordinates to addresses. We developed a “reverse”
geocoding service for our region, on the basis of maps

available from a commercial navigator software. To take
into account GPS and geocoding inaccuracies, and the
errors introduced by the place retrieving process, the W4
diary application tries to reverse geocode all the addresses
within a radius of 10 m from the place being segmented.
Thus, the algorithm actually creates a list of candidate
addresses where the user might have been.

A similar algorithm can mine the Web to identify what is
in a particular address. The primary source of information
in this context would come from yellow- and white-pages
services. However, due to the aforementioned localization
errors, this process will return in some cases a list of all the
businesses performed in the geocoded addresses. Still, in
some situations a single exact match could be retrieved like
in the case of the user being in a big stadium or entering a
big shopping mall. Even more semantic information could
derive by searching relevant events that happened in that
place at that time. For example, it could be possible to
extract from the Web the fact that “the 4th of July parade”
took place near the geocoded location at the same time the
user was there. This process could create a place represen-
tation like the one depicted in Fig. 12.

To perform this operation, in our implementation, we
screen-scraped information coming from a widely used
online white-pages service1 in our region allowing to query
for who is at a given address. This operation is trivially
achieved using the tools provided by the htmlparser2

software. In particular, each geocoded address belonging
to a given place (as provided by the previous step) is looked
up in the white-pages and the corresponding business is
retrieved. The result of this process is a set of entries
labeled with the possible businesses found in that place.
This translation process is not completely accurate, since
several addresses are not listed in the white-pages (mainly
due to privacy constraints). Still, the fact that most public
businesses (like shops, etc.) are listed, while several private

Who: user:Marco

What: standing

Where: 123, 5th Ave, NY, USA

When: July, 4, 2006, 4:35pm-5:41pm

Who: user:Marco

What: standing

Where: 4,5,…,21, 26th St., NY, USA

When: July 5, 2006, 7:00am – 8:00am

Figure 11 Extracting addresses. Because of GPS errors multiple
addresses can be associated to a single W4 tuple

Who: user:Marco

What: standing

Where: lon = -73.974, lat = 40.763

When: July, 4, 2006, 4:35pm-5:41pm

….

Figure 10 W4 description of the places visited by the user

1 www.paginebianche.it
2 htmlparser.sourceforge.net

Mobile Netw Appl (2009) 14:107–119 113

www.paginebianche.it
htmlparser.sourceforge.net

houses are not, allows to prune out a lot of unlikely
addresses being discovered by the previous step. Private
spaces like “home”—that are likely not to be listed in the
white-pages—can be derived from the algorithm presented
in the following subsection.

It is finally worth pointing out that the operations
described in this subsection could be automated and
improved given the availability of a complete spatial
database like the one integrated into commercial navigator
systems.

3.3 Extract the meaning of places on the basis of user habits

Given that the user activities are profiled in some way (e.g.,
the system may know a priori that the user tends to stay at
home at night), an algorithm can give labels to places by
looking at the temporal patterns in which places are visited.
For example, the place most visited at night during
weekdays can be meaningfully labeled as “Home”. Such
kind of analysis can be also used in combination with
commonsense information [17, 18] to disambiguate be-
tween alternative retrieved places. For example, in Fig. 12
the ambiguity among “Starbucks Coffee” and “Uno’s
Pizza” can be resolved (at least from a probabilistic point
of view) in favor of the former, in consideration of the fact
the place has been visited from 7:00 A.M. to 8:00 A.M.

To implement this algorithm, for each place being
identified in the first phase, we create a Bayesian network

to analyze the temporal pattern in which the place has been
visited by the user (see Fig. 13). The Bayesian network is
composed of 4 nodes.

1. The weekend node represents a Boolean variable used
to represent whether a given observation takes place in
the weekend or not. This node is always observed on
the basis of the information stored in the GPS signal.
This information represents the variability in people
behavior between weekdays and weekends.

2. The hour node is a 24-values discrete node storing the
time of day. This node is always observed on the basis
of the information stored in the GPS signal.

3. The kind of place node is a discrete node modeling
what a given place is. In our implementation, we try to
classify among five different kinds of places: home,
work, restaurant (to indicate any kind of dining place),
pub (to indicate any kind of evening entertainment),
and disco (to indicate any kind of late-night entertain-
ment). This classification is rather arbitrary, and each
user of the application should provide the kinds of
place that best match his habits. This node is never
observed, and is inferred by probability computations.

4. The happens node is a Boolean variable expressing
whether the user visits that place at that time. This node
is always observed on the basis of the outcomes of the
previous localization phase.

The role of the Bayesian network is to encode the
routine of the user daily life. This is done by compiling the
probability distribution associated to the fact that the user,
in a given moment, is in a certain kind of place. For
example, the probability of the user being at home during
weekdays is depicted in Fig. 14.

Similar tables can be created for other kind of places. In
our current implementation, these tables are compiled by
hand by each user to whom is asked to self-report the
likelihood of being in a given kind of place at a given time.
Such kind of data could be derived automatically also by a
labeled trace of user’s past whereabouts, using standard

Figure 13 Bayesian network to
classify places. White nodes are
those that will be provided as
evidence

Who: user:Marco

What: standing

Where: 4th July Parade

When: July, 4, 2006, 4:35pm-5:41pm

Who: user:Marco

What: sitting

Where: Starbucks Coffee || Uno’s Pizza

When: July 5, 2006, 7:00am – 8:00am

Figure 12 Extracting businesses. Because of errors in the previous
phases, multiple businesses can be associated to a single place

114 Mobile Netw Appl (2009) 14:107–119

learning algorithms [23]. Once the tables are filled in, basic
inference operations in Bayesian networks will be used to
derive the most likely kind of place given the visit pattern.

Specifically, when the previous algorithms identify that
the user is visiting a place, the corresponding Bayesian
network is retrieved, and the weekend, hour, happens nodes
are set to their actual values (the happens node is trivially
set to true to indicate that there is a visit). Then, the
application computes the probability distribution of the kind
of place node. The newly computed distribution will be
used as a prior for subsequent visits. This naturally allows
evidences to add up, actually enabling the Bayesian
network to classify the places on the basis of the visit
temporal pattern [19].

The combination of all the presented algorithms can
create a W4 diary of the user whereabouts and activities [5].
The result could be used either as a stand-alone application
allowing a user to browse through his past, or as a
supporting tool for other services that could take advantage
of the collected data.

4 Experiments

To test the effectiveness of our algorithms, we collected
GPS traces for three weeks from three members of our
research team (among the authors) as they went about their
normal lives. Each member carried either an i-mate PDA
2K smart phone, or a HP IPAQ RX3700 pda, connected
with a Bluetooth GPS reader. GPS signal has been acquired
at 0.1 Hz and processed on the fly by the handheld device.
Overall, we acquired about 90,000 GPS poses amounting at
360 MB of data. Overall, this resulted in 25 places being
identified as relevant. During the data collection weeks,
data collectors recorded ground-truth information about the
places they have been. Such information has been collected
with a simple notepad application running on the PDAs and
allowing to write a textual description of where the user has
been at a given time. In the following, we present some
results obtained by comparing the W4 entries produced by
the algorithms, after some weeks of usage, with recorded
ground-truth information.

In a first set of experiments, we tried to verify the
accuracy of the algorithm to identify relevant places on the

basis of the GPS trace log. Following an approach similar
to [13], we classify the incorrect results into: (1) wrong: the
user is in a place, but the algorithm reports he is in a
different place, (2) false negative: the user is in a place, but
the algorithm reports he is moving, (3) false positive: the
user is moving, but the algorithm reports he is in a place.
The results of this experiment are reported in Fig. 15, and
they actually show the average of the results obtained by
the data collectors. The results we obtained show that the
algorithm is correct in 80.6% of the cases. This result is
coherent with the results presented in [13] with regard to
the A–S algorithm [3] that is the one closer to our
implementation. The high-percentage of false negatives
(compared to the other cases) is mainly due to the fact
sometimes the GPS takes a long time before acquiring the
signal. Thus, it can happen that a user leaves a building,
and the trace of the GPS is acquired only when he is
already far away. In such a situation the place is not
detected given the constraint on the maximum distance of
spatial disconnection described in Section 2.1.

In a second set of experiments, we tried to verify the
results of the (reverse) geocoding service. Basically, the idea
is to verify the impact of localization errors in the process of
geocoding. It is worth noticing that the maps we used to
perform this operation record only the first and the last
number of a street segment and span, uniformly, all the other
numbers among the segment. This of course introduces
further errors in that it does not take in to account the
differences in the sizes of the buildings.

Since the place discovery algorithm clusters together
points that are closer than 10 m, we counted the number of
addresses retrieved within a circle of 10 m radius centered
at the relevant place. The results of these operations are
displayed in Fig. 16, left, and highlight two aspects. On the
one hand, the address of almost half of the places can be
retrieved uniquely (this is the case of large buildings—like
the departments of our university). On the other hand, some
places produce more than ten associated addresses. This is
the case of small buildings in the center of the city. It is fair
to report that these distributions are rather preliminary since
they are based on a dataset of only 25 places (those
identified by the diaries of the three data collectors). We are
currently conducting a more extensive data collection
process that would allow us to identify more stable
distributions.

Correct Incorrect

 Wrong False negative False positive

80.6% 0% 17.3% 2.1%

Figure 15 Errors in the algorithm to identify relevant places on the
basis of the GPS trace log

Weekend = false, Kind of Place = home

Time 11pm-

6am

7am 8am 9am-

1pm

2pm-

5pm

6pm-

7pm

8pm 9pm 10pm

P(happens)

= true

0.8 0.6 0.4 0.2 0.2 0.4 0.5 0.6 0.7

Figure 14 Conditional probability table describing the probability of
the user being at home during weekdays

Mobile Netw Appl (2009) 14:107–119 115

In a third group of experiments, we tried to evaluate the
performance of retrieving the businesses performed on a
given place via the white-pages service. Comparing the
results with the ground-truth annotations, we first tried to
determine whether the correct place is retrieved. With
disappointment, we verified that the actual place could be
retrieved in only 40% of the cases. This is either due to
localization or white-pages errors. Moreover, due to the
multiplicity of addresses being discovered, several busi-
nesses can be assigned to a given place. In Fig. 16, right,
we report the distribution of the number of businesses
found for a given place. It is easy to see that some addresses
are not listed in the white-pages, since there are no places
with more than ten retrieved businesses. In addition, It is
worth reporting that the number of businesses being
retrieved is almost independent of whether the correct
place has been found or not. Some places, in fact, return a
long list of candidate entries not containing the correct one.
The main source of errors of this phase is related to the
white-pages interface and how it handles street numbers.

In our future work we will try to improve this result in
many directions. First, we will try to integrate our software
with commercial spatial databases (e.g., http://www.tomtom.
com/pro). This would notably improve the coverage of the
addresses and businesses being mapped. Second, we will try
to implement more advanced localization algorithms in order
to reduce the uncertainty about user location [13]. Finally,
we will try to embed commonsense reasoning (e.g., the user
does not go to a disco in the morning) to cut off unlikely
possibilities. The last resort would be to ask the user. In
uncertain situation the W4 diary could pop up and let the
user solve possible ambiguities.

Finally, the last set of experiments verified the results of
the Bayesian classification. Overall, our approach classifies
the places correctly in 64% of the cases. The confusion
matrix for the classes being identified is reported in Fig. 17.
It is possible to see that home and work places have better
classification performances since their associated temporal
pattern of visits is defined more precisely. On the contrary,

places like pubs, restaurants and discos have a more
flexible pattern of visits and thus they are classified less
precisely.

5 Related work

In recent years, several models addressing contextual
information and context-aware services have been investi-
gated, and several algorithms to extract high-level informa-
tion from location data have been proposed. In this section,
we discuss some relevant proposals in these areas: First we
present related work in models to represent context
information, second we present related works concerning
algorithms to extract information from context data that are
suitable to create diary like application.

However, in general, we want to emphasize that a
strength of our approach is to develop both these two aspect
together in order to let them take advantage of each other.

5.1 Related context models

A first group of research focuses on models for context-
aware information trying to create high-level and general-
purpose context representation from low-level sensor data.

The work by Schmidt et al. [28] concentrates on the
acquisition of context data from sensors and the processing
of this raw data through a layered model. Similarly, the

 Home Work Restaurant Pub Disco

Home 0.75 0 0.25 0 0

Work 0.66 0.33 0 0

Restaurant 0 0 0.5 0.5 0

Pub 0.2 0 0.6 0.1

Disco 0 0 0.5 0.5

0

0.1

0

Figure 17 Confusion matrix for Bayesian network classification:
horizontal labels are ground-truth information, vertical labels are
classification labels

% Places Associated to a Given Number of Addresses

0.00

5.00
10.00

15.00
20.00

25.00
30.00

35.00
40.00

45.00

1 2-5 5-10 10+

retrieved addresses

%
 p

la
ce

s
% Places Associated to a Given Number of Businesses

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 1 2-5 5-10 10+

businesses

%
 p

la
ce

s

Figure 16 Percent of relevant places corresponding to a given number of addresses (left), and businesses (right)

116 Mobile Netw Appl (2009) 14:107–119

http://www.tomtom.com/pro
http://www.tomtom.com/pro

Context Toolkit [8] focuses upon deriving context from raw
data by providing abstract components that can be
connected together to capture and process data from
sensors. Although powerful, these approaches lack of a
common semantic to describe the data. This forces
developers to build new query languages and new
components that strongly depend on the kind of informa-
tion at hand. On the contrary the W4 model provides a
common semantic to deal with multiple context information
in a coherent way.

Another group of research focuses on developing
context models that can be easily queried. The work
proposed by Schilist et al. [29] creates a simple context
model in which information are maintained by a set of
environment variables that can be accessed in a flexible
way. Analogously, Henricksen et al. in [11] analyze
context by adding several features such as the temporal
aspects, information imperfections, etc. These approaches
lead to a long list of all the characteristics of context,
lacking in simplicity. In fact it becomes very difficult to
browse the list effectively while the W4 model avoids this
problem by organizing the characteristics of the context in
the 4 fields discussed.

A third group of researchers describe context via a set of
tuples with name-value pairs. The Context Fabric model
[14] is based on context tuples each describing a single
piece of context data in terms of entities (people, places,
things), attributes (e.g. the name) and relationships, special
kinds of attributes that reference to other entities. Similarly,
Egospaces [15] provides a structured notion of context as
name-value pairs. Egospaces addresses context-aware
programming in ad-hoc environments populated of agents
by proposing an egocentric notion of context called “view”
where every agent holds a personal representation of the
world. The main shortcoming of both these approaches is
that it is difficult to browse the context description because
of the lack of a predefined structure in the data. The W4
representation, instead, strongly structure context informa-
tion trying to overcome this problem.

Finally, a very interesting proposal is presented in [31].
This work adopts in a seven-field data structure to
describe the context. The fields are: subject, predicate,
object, time, area, certainty and freshness, with similar
meaning to W4. Beyond the fields meaning, the purpose is
different: their context model is not for pervasive
computing application, but for managing the consistency
between data from multiple sources. Similar considera-
tions apply for the system described in [6]. This work
describes RFID tags with a structure similar to ours.
However, this is not a general model, since it is applied to
RFID tags only. The strength of our approach, instead, is
to be general purpose and able to represent a large number
of context information.

5.2 Related place extraction algorithms

The recent availability of affordable localization mech-
anisms and the recognition of location as a primary
source of context information has stimulated a wealth of
works addressing topics related to place recognition and
identification.

One of the earliest work trying to automatically extract
user location and compose a diary of users’ whereabouts is
the PEPYS application [21]. This application uses IR
badges and detectors to track user location in an indoor
environment. On the basis of such an information, PEPYS
infers where the user has been and submits to the user a log
of the location being visited as a memory feedback. This
kind of indoor localization systems, as well as its more
modern incarnation (e.g., [10]) could complement our
algorithms to deal with indoor settings.

The work described in [13] compares three algorithms to
cluster continuous GPS readings to find relevant places.
However all these algorithms are only useful to spot
relevant places and identify possible recurrent visit to the
same place while the problem of adding semantic informa-
tion is completely neglected. The works in [3, 16, 20, 27]
present similar clustering algorithms.

The problem of adding semantic tags is posed, at least as
an open problem, in [12]. Other than clarifying the
importance and the need for such a conversion from
“positions” to “places”, the author illustrates two viable
approaches to add semantics. The first approach is based on
labeling places on the basis of the activities performed
there. The author proposes using RFID tags to infer users’
activities on the basis of the objects being touched (e.g., the
user touches a fork and a knife, the system infers he is
having dinner). Then, the system uses the activity (e.g.,
having dinner) to label the place (e.g., restaurant). The
second approach involves humans assigning labels to
places pro actively, and exchanging such labels among
users. Neither of the two approaches has been actually
realized, and they are mainly left as future work. In any
case, once available, they could be well complement and
integrate our proposal.

The works described in [23, 24] adopt a Bayesian
network to infer high-level user behaviors from low-level
GPS readings. While their approach is similar to ours, their
goal is different in fact as the algorithms we presented try to
classify the places, theirs try to classify user activities and
eventually predict where the user will go next on the basis
of his past routes. It is worth to report that some user
activities can directly identify the place in which they occur.
For example, a sharp step in the user speed can reveal the
user started/stopped driving the car. This automatically can
be used to label that place as a parking place. In general,
however, we plan to use these kinds of algorithms to

Mobile Netw Appl (2009) 14:107–119 117

complete the “what” field in the W4 model and to extract
even more information about the user activities.

An important difference between the above presented
and our algorithms is that, by relying on the common
general W4 model, our algorithms are more interoperable
and can work in a plug-and-play manner. It would be very
interesting to create W4 interfaces for the other proposals to
let them become interoperable with our models and
algorithms.

6 Conclusions and future works

Organizing contextual data for their effective and meaning-
ful exploitation by autonomic pervasive services is, and will
increasingly become, a challenging issue. As the technol-
ogy for producing contextual information is becoming
widespread, and as a variety of diverse pervasive services
are continuously being proposed, there is need of proper
solutions to represent, pruning and organizing data. The W4
model that we have developed, as presented in this paper,
proposes itself as an effective model supporting context
representation in future pervasive and mobile computing
services. In this paper we also presented and evaluated
several algorithms to extract high-level information from
the W4 tuples describing the user whereabouts. There are
several directions to improve our work:

With respect to the W4 model, it would be important to
develop more applications to test the model effectiveness in
a variety of application scenarios. In particular it would be
important to understand what kind of context information
can be represented when more W4 tuples are combined
together (like in the example of Figs. 5 and 7). Another
important research topic is to better define and enrich the
model itself. On the one hand, it would be important to
describe the content of the W4 fields by means of standard
ontologies in order to let the W4 model be usable in open
and dynamic scenarios. On the other hand, it would be
interesting to define principles and tools to assess the
reliability and truth-degree of the W4 information.

With respect to the algorithms, we think that much more
information about the places could be retrieved from the
Web. This could be very useful especially in the cases in
which localization is precise enough to return a single or a
couple of addresses. Such kind of retrieved information
could be a precious source of information to estimate the
user profile. Commonsense data could be exploited to
effectively discriminate among several candidate places
[17, 18]. For example, if a person went to a restaurant at
noon, it is very unlikely that he will go to another restaurant
at 2 pm. Other kind of sensing devices and algorithms
could be employed to extract more information about the
place. Moreover, some GPS clustering techniques that have

been used in related works [13] could improve the
performance of our implementation.

In conclusion, we think that the combined development
of the context model and the information extraction
algorithms, guided by the W4 diary service, is a fruitful
way to develop them both and obtain results that can be
also generalized to other scenarios.

Acknowledgements Work supported by the project CASCADAS
(IST-027807) funded by the FET Program of the European Commission.

References

1. Abdelzaher T, Anokwa Y, Boda P, Burke J, Estrin D, Guibas L,
Kansal A, Madden S (2007) Mobiscopes for human spaces. IEEE
Pervasive Comput 6(2):20–29

2. Ahuja S, Carriero N, Gelernter D (1986) Linda and friends. IEEE
Comput 19(8):26–34

3. Ashbrook D, Starner T (2003) Using GPS to learn significant
locations and predict movement across multiple users. Personal
Ubiquitous Comput 7(1):275–286

4. Bannach D, Lukowicz P, Amft O (2008) Rapid prototyping of
activity recognition applications. IEEE Pervasive Comput 7
(2):22–31

5. Bicocchi N, Castelli G, Mamei M, Rosi A, Zambonelli F (2008)
Supporting location-aware services for mobile users with the
whereabouts diary. Int Conf Mobile Wireless Middleware,
Operating Syst Appl, Innsbruck, Austria

6. Bravo J, Hervas R, Chavira G, Nava S (2006) Modeling contexts by
RFID-sensor fusion. Conf Pervasive Comput Commun Workshops,
Pisa, Italy

7. Castelli G, Rosi A, Mamei M, Zambonelli F (2007) A simple
model and infrastructure for context-aware browsing of the world.
Int Conf Pervasive Comput Commun, White Plains, NY, USA

8. Dey AK, Abowd GD, Salber D (2001) A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications. Hum-Comput Interact 16(2–4):97–166

9. Fitzgerald M (2004) Your digital wallet. MIT Technology Review,
24 August

10. Hahnel D, Burgard W, Fox D, Fishkin K, Philipose M (2004)
Mapping and localization with RFID technology. IEEE Int Conf
Robotics and Autom, New Orleans (LA), USA

11. Henricksen K, Indulska J, Rakotonirainy A (2006) Developing
context-aware pervasive computing applications: Models and
approach. J Perv Mobile Comput 2(1):37–64

12. Hightower J (2003) From position to place. Workshop on
Location-Aware Computing, Seattle, WA, USA

13. Hightower J, Consolvo S, LaMarca A, Smith I, Hughes J (2005)
Learning and recognizing the places we go. Int Conf on
Ubiquitous Comput, Tokyo, Japan

14. Hong J (2002) The context fabric: An infrastructure for context-
aware computing. Conf Comput Human Interaction, Minneapolis,
MN, USA

15. Julien C, Roman G (2006) EgoSpaces: Facilitating rapid development
of context-aware mobile applications. IEEE Trans Softw Eng 32
(5):281–298

16. Kang J, Welbourne W, Stewart B, Borriello G (2004) Extracting
places from traces of locations. Int Workshop on Wireless Mobile
Appl Services on WLAN Hotspots, Philadelphia, PA, USA

17. Liu H, Singh P (2004) ConceptNet: a practical commonsense
reasoning toolkit. BT Technol J 22(4):211–226

118 Mobile Netw Appl (2009) 14:107–119

18. Lenat D, Guha RV (1990) Building large knowledge-based
systems: Representation and Inference in the Cyc Project.
Addison-Wesley, New York

19. Mamei M, Nagpal R (2007) Macro programming through
bayesian networks: Distrib Inference Anomaly Detection, Int
Conf Pervasive Comput Commun, White Plains, NY, USA

20. Marmasse N, Schmandt C (2000) Location-aware information
delivery with commotion. Int Symp Handheld and Ubiquitous
Comput, Bristol, UK

21. Newman W, Eldridge M, Lamming M (1991) PEPYS: Generating
autobiographies by automatic tracking. European Conf Computer
Supported Cooperative Work, Amsterdam, The Netherlands

22. Paskin M, Guestrin C, McFadden J (2005) A robust architecture
for inference in sensor networks. Int Symp Information Processing
in Sensor Networks, Los Angeles, CA, USA

23. Patterson D, Liao L, Fox D, Kautz H (2003) Inferring high-level
behavior from low-level sensors. Int Conf Ubiquitous Comput,
Seattle, WA, USA

24. Patterson D, Liao L, Gajos K, Collier M, Livic N, Olson K, Wang
S, Fox D, Kautz H (2004) Opportunity knocks: A system to provide

cognitive assistance with transportation services. International
Conference on Ubiquitous Computing, Nottingham, UK

25. Philipose M, Fishkin K, Perkowitz M, Patterson D, Fox D, Kautz
H, Hahnel D (2004) Inferring activities from interactions with
objects. IEEE Perv Comput 3(4):50–57

26. Riva O, Borcea C (2007) The urbanet revolution: Sensor power to
the people. IEEE Perv Comput 6(2):44–44

27. Schmid F, Richter K (2006) Extracting places from location data
streams. International Workshop on Ubiquitous Geographical
Information Services, Munster, Germany

28. Schmidt A, Aidoo KA, Takaluoma A, Tuomela U, Van Laerhoven
K, Van de Velde W (1999) Advanced interaction in context.
Symposium on Handheld and Ubiquitous Computing, Karlsruhe,
Germany

29. Schilit B, Adams N,Want R, Context-aware computing applications.
Workshop

30. Twitter: What are you doing? http://Twitter.com
31. Xu C, Cheung SC (2005) Inconsistency detection and resolution

for context-aware middleware support. Symposium on the
Foundations of Software Engineering, Lisbon, Portugal

Mobile Netw Appl (2009) 14:107–119 119

http://Twitter.com

	Extracting High-Level Information from Location Data: The W4 Diary Example
	Abstract
	Introduction
	The W4 context model
	Data representation
	Data access and service engineering
	Data generation

	Context analysis algorithms
	Extracting places where the user spends his time
	Extracting addresses and businesses
	Extract the meaning of places on the basis of user habits

	Experiments
	Related work
	Related context models
	Related place extraction algorithms

	Conclusions and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

