

A Simple Model and Infrastructure for
Context-aware Browsing of the World

Gabriella Castelli, Alberto Rosi, Marco Mamei, Franco Zambonelli

DISMI – Università di Modena e Reggio Emilia – Via Amendola 2 – Reggio Emilia – ITALY
{name.surname}@unimore.it

Abstract
The imminent mass deployment of pervasive
computing technologies such as sensor networks and
RFID tags, together with the increasing participation
of the Web community in feeding geo-located
information within tools such as Google Earth, will
soon make available an incredible amount of
information about the physical and social worlds and
their processes. This opens up the possibility of
exploiting all such information for the provisioning of
pervasive context-aware services for “browsing the
world”, i.e., for facilitating users in gathering
information about the world, interacting with it, and
understanding it. However, for this to occur, proper
models and infrastructures must be developed. In this
paper we propose a simple model for the
representation of contextual information, the design
and implementation of a general infrastructure for
browsing the world, as well as some exemplar
services we have implemented over it.

Keywords: Context-awareness, Location-dependent
Services, Middleware, Sensor Networks, RFID Tags.

1. Introduction

Two apparently disjoint trends motivate this work. On
the one hand, the imminent mass diffusion of pervasive
computing technologies such as sensor networks
[ChoK03] and RFID tags [Wan06] will soon make
available an incredible amount of real-time information
about the physical world, its processes, and its objects.
On the other hand, the dramatic success of participatory
Web tools (aka Web 2.0 technologies) is feeding the
Web with information of any kind about any topic. In
particular, mapping tools such as Google Earth and
Google Maps get continuously enriched by geo-located
information coming from very diverse social
communities and related to a variety of facts and events
situated in the world [But06].

Overall, both the above trends contribute to
accumulate information that can be potentially used to
build real-time and historical models of a number of
facts and processes happening in the world. More
pragmatically, the possibility of acquiring detailed
digital information about the surrounding context opens
up the possibility of exploiting all such information for
“browsing the world” [Cas06]. The concept of browsing
the world considers that, by properly integrating
information about the surrounding world coming from
both pervasive devices and form the Web, it will be
possible for users to gather contextualized relevant
information, and for services to effectively support user
activities related to interacting with the physical world
in a context-aware way.

However, considering that the amount of available
information from a variety of sources could become
overwhelming, its effective exploitation by users and
services calls for proper models to represent such data
in an expressive yet simple-to-be-manipulated way, and
for proper software infrastructure to organize and
provide access to it. Accordingly, the contribution of
this paper is twofold.

First, we propose a simple model to represent
contextual information about the physical world, for the
use of both users’ querying activities and context-aware
services. The model, which we call “W4”, is based on
the consideration that most information about the world
can be simply represented in terms of four “W”s – Who,
What, Where, When – and that such a representation
enables for very expressive , and flexible data usages.

Second, we describe the design and implementation
of a general middleware infrastructure for browsing the
world, facilitating the development and supporting the
activities of general-purpose context-aware pervasive
services. The infrastructure supports PDAs and laptops
access to information coming from both pervasive
devices and the Web, provides for representation and
organization of data in W4 terms, makes available a Java
interface for users’ queries and for services access to

2

such data, and it is integrated with both Google Earth /
Google Maps for the sake of effective user interfacing.

The remainder of this paper is organized as follows.
Section 2 better details the general scenario of browsing
the world and the challenges it implies. Section 3
presents the W4 model. Section 4 details the
implemented software infrastructure. Section 5 presents
some services we have implemented on top of our
system. Section 6 discusses related work in the area.
Section 7 concludes.

2. Browsing the World

In this section, we better define the scenario in which
our research situates, by properly identifying the
components involved in the “browsing the world” vision,
and by discussing the associated key challenges.

2.1. Scenarios

As stated in the introduction, in the near future, our
everyday environments will be densely populated by a
variety of embedded devices such as sensor networks
[ChoK03], RFID tags [Wan06]. Users in an environment
will be able, via wireless interfaces mounted on some
wearable computing device (e.g. a PDA or a smart
phone), to directly access devices in their proximities to
gather information about phenomena occurring in the
surroundings or (as in the case of RFID tags attached to
objects) about nearby physical objects. In addition, users
will be able to access to the Web via some wireless
communication technology, to dynamically retrieve any
needed information. Other than accessing “traditional”
Web information (e.g., html pages and Web services),
this also enables users to access geo-located
information concerning specific sites geographical
areas and general facts and annotations about them, as
they can continuously provided via collaborative Web
2.0 technologies by the Web community [Esp01,
TerK06]. In addition, it enables users to access
information generated by sensors and embedded devices
(far in the world or close to him but beside his direct
access).

Users, in turn, can decide to unveil (totally or to
some limited extent) their presence in an environment,
by making somehow available to the public their
identity, location, and/or activities. This can occur by
dynamically uploading such information on the Web, or
by making it available to other via ad-hoc connections,
or even by uploading it into surrounding pervasive
devices. In this latter case, pervasive devices such as
RFID tags would act as a sort distributed memory
infrastructure [MamQZ06]. The location of users will be

always available, either because they will carry on a GPS
or because of location can be inferred by the patterns of
access to pervasive devices (e.g., the access to a RFID
tag with a known location implicitly determines the
location of the user [Sat05]) (see Fig. 1).

On the basis of the above considerations, the concept
of browsing the world, in general terms, consider the
possibility of navigating in an information space that –
by properly merging and integrating information coming
from both pervasive devices and the Web can represent a
detailed model of the world, comprising both present
and historic fine-grained geo-located data about the
world, its entities, its processes, and its social life. In
context -aware user-centric terms, which are the ones of
more interest here, the concept of browsing the world
implies the possibility for users in an environment to
access and navigate meaningful information about the
surrounding physical world, and for software services to
access and manipulate such information to enforce
various degree of context-awareness and context-
adaptation.

Figure 1. The general scenario of browsing the
world.

2.2. Challenges

From the merely technological viewpoint, the “browsing
the world” vision could be already turned into reality.
Indeed, novel services and Web sites that can be
included in the “browsing the world” category appear
every day [Cas06]. However, beside specific service
implementations, for browsing the world to become
common practice based on sound engineered activities,
several challenges remains to be addressed. In
particular:
1. It would be fundamental to create a general model

to represent context information and to build a
world model. Spatial information is important but it
is not enough. Temporal information must be
included, as well as information describing the

3

activities taking place in the world. The model
should enable to deal with incomplete information,
and should allow navigation among context
information on the basis of what is available at a
given time.

2. It would be important to have a general
infrastructure supporting the model that should
work without requiring or committing to the
availability of specific technologies. The
infrastructure should be general-purpose,
autonomic and adaptable. Relying on this
infrastructure, the activities of browsing the world
should not be compromised because of say, the
temporal unavailability of an Internet connection or
the unavailability of a GPS, or of an RFID reader.
Consequently, applications built on that
infrastructure should not mandate the availability of
specific information, but should exploit whatever
available information on a best effort basis.

Beyond the horizon, it would be important for such a
general model to enable easy processing of data, to
facilitate the identification of links between isolated
bunch of information. This would enable the creation of
complex knowledge networks, and possibly would
promote the creation of “new knowledge”, as it can be
derived by inference from existing information. The
attempt to face the above challenges, by defining a
simple yet effective model for context data and a
general software infrastructure, as preliminary and
incomplete as it can be, is the exact goal of our work.

3. The W4 Context Model

We propose a simple model in which context data is
expressed by a four field structure: Who, What, Where and
When. Such a model appears effective in a number of
circumstances since it points out some of the main
topics that are involved in human thinking: who is
acting? What is he/she/it doing? Where and when the
action takes place?

3.1. Overview

The goal of our proposal is to develop a general
model to manage contextual information. Such
information will come from multiple and heterogeneous
sources, and would be related to a large number of
situations ranging from the description of physical
properties in geographic areas, to social facts and
processes happening in the world.

In particular, we developed a model in which context
data is described by means of a 4-fields tuple: (Who,
What, Where, When). We chose this structure because

of its evident meaning and flexibility. In fact, a W4-tuple
allows to express a situation in a rather natural and
human-like way, e.g., “someone or something (Who)
does some activity (What) in a certain place (Where) at
a specific time (When)”. We call each of these tuples a
knowledge atom to describe the fact they represent an
atomic unit of context information.

Knowledge atoms are created by a number of
software agents running on different (possibly
embedded) devices, and will be stored in a suitable
shared data space (in section 4, we detail our actual
implementation of this space). Knowledge atoms can be
retrieved via a pattern matching mechanism, and queries
can be expressed as W4 tuples with empty fields (formal
parameters). Application agents (ranging from context-
aware service providers, to simple interfaces supporting
users in browsing information) will access the shared
space to retrieve those context information that are
suitable for their application task.

3.2. W4 Data Representation and Generation

In the following we detail the four-fields (Who,
What, Where, When) that constitute our context
representation.
- Who is the subject described by the context

structure. Who may be a human person (e.g.,
Gabriella) or an unanimated part of the context (e.g.,
a RFID tag). The Who field is represented by a
string with an associated namespace that defines the
“kind” of entity that is represented. For example,
valid entries for this field are: “person:Gabriella”,
“tag:tag#567”.

- What is the activity performed by the subject. This
information can be either inferred from other
context parameters (e.g., an accelerometer can
reveal that the user is jogging), or it can be
explicitly supplied by the user. This field is
represented as a string containing a predicate-
complement statement. For example, valid entries
for the What field are: “read:book”, “work:pervasive
computing group”, “read:temperature=23”.

- Where is the location to which the context relates.
In our model the location may be a physical point
represented by its coordinates (longitude, latitude),
a geographic region (specifically, our model adopts
the Postgis language to describe such a region
[postgis.refractions.net], or it can also be
represented as a logical place. Logical places like
“campus” or “bank” are mapped in their actual
location by using a fixed dictionary. Logical places
like “here” are mapped via simple algorithms that
take into account the user current GPS location. It

4

is worth noticing that this kind of mapping enforces
context-awareness, the same “here” information get
multiple meanings depending on the user actual
location.

- When is the time duration to which the context
relates. It may be an exact range (e.g.,
“2006/07/19:09.00am - 2006/07/19:10.00am”), a
concise description of a range (e.g., 9:28am), or
even a logical value (e.g., “now”, “today”,
“yesterday”, “before”). Exact values are represented
with a “begin-time-of-day – end-time-of-day”
expression. Concise description and logical values
are mapped via simple algorithms to the
corresponding exact range. For example 9:28am =
2006/07/19:9:28am ± 5min. Again, it is important
to emphasize that concise time descriptions and
logical times are contextual operators, their
meaning depends on the time the query is actually
issued.

Software agents are in charge of creating and
inserting knowledge atoms in the shared space. Agents
sense information from several devices (e.g. RFID tag,
GPS devices, Web services) and combine them in order
to produce a concise and effective description of what is
happening in terms of a W4 tuple. The following
examples illustrates the atom generation process.

Gabriella is walking in the campus’ park. An agent
running on her PDA can periodically create an atom
describing her situation.

Who: user:Gabriella
What: works:pervasive computing group
Where: lonY, latX
When: now
The Who and What information are entered directly

by the user at the login of the agent application, Where
and When are dynamically provided by the GPS device.

Gabriella’s PDA is connected with a RFID tag reader.
A specific RFID agent controls the reader and handles
the associated events. When a tag is read, the RFID agent
creates a knowledge atom to store the tag information.
In particular, either the tag would contain its own
description, or the tag ID would be resolved in a
dictionary (mapping tag IDs into the associated
descriptions) to retrieve associated data. This
information, together with the “tag” namespace will fill
the Who field. What is left unspecified. The agent
accesses the GPS to retrieve location of the tag and fill
the Where field. Finally, it completes the When field
with the logical value “now”.

Who: tag:statue of Ludovico Ariosto
What: -
Where: lonY, latX

When: now

3.3. W4 Interface

Since knowledge atoms will be stored in a shared data
space, our model requires two fundamental operations:
one for injecting knowledge atoms into the shared
space, and one for retrieving atoms from it. In particular,
taking inspiration from tuple-space approaches, we
defined the following API.

void inject(KnowledgeAtom a);
KnowledgeAtom[] read(KnowledgeAtom
a);
The inject operation is trivial: an agent accesses the

shared data space and store a knowledge atom there.
The read operation, instead, requires some more

discussion. The W4 model is suitable not only to
represent context information, but for questioning too.
A query will be represented by a W4 tuple with missing
values (i.e., fields left unspecified). The read operation
triggers a patter matching procedure between the query
and the knowledge atoms that already populate the data
space. Matching atoms are returned as results of the
query. In this process, it is important to understand that
the pattern matching operations work rather differently
from the traditional tuple space model. In fact, our
proposal can rely on the W4 structure to enforce more
expressive pattern matching operations that have a
different meaning for the various Ws.
- Who and What. Pattern matching operations in

these two fields is based on string-based regular
expressions. For example, a patter like “user:*” will
match any user.

- Where. Pattern matching in this field involves
spatial operations (again inspired by Postgis
operations). Basically, the template defines a
bounding box. Everything within the bounding box,
matches the template. For example, a pattern like
“circle,center(lonY,latX),radius:500m” defines a
circle centered at (lonY, latX) with a 500m radius.
Tuples with a Where field within the circle will
match the template. Logical places have to be
translated into actual spatial regions before going
through the pattern matching.

- When. In this kind of pattern matching, the template
defines a time interval. Everything that happened
within that interval matches the template. Concise
time descriptions and logical times will be
converted into actual time interval before pattern
matching.

The following two examples illustrate the querying
process.

Gabriella is walking in the campus, and wants to know

5

if some colleague is near. She will ask (read operation):
Who: user:*
What: works:pervasive computing group
Where: circle,center(lonY,latX),radius:500m
When: now

Analogously, Gabriella can ask if some of her
colleagues has gone to work in the morning:

Who: user:*
What: works:pervasive computing group
Where: office
When: 2006/07/19:09.00am -
2006/07/19:10.00am
It is important to emphasize that returned answers

have not to be “complete” W4 atoms. The pattern
matching mechanism also allows matches between
incomplete information. Thus, following this approach,
applications are based on components entering complete
and incomplete context information and getting in
response refined (but possibly still incomplete)
information.

3.4. Future Extensions

There are two important extensions that could be
valuably added to the model.

On the one hand, the current model is somewhat
limited by the lack of a reference ontology that could
add semantic relationships to the concepts in the W-
fields. With such an ontology in place, knowledge atoms
could be related also if their fields do not match exactly.
Moreover, application agents would be able to
manipulate the retrieved context information in a more
meaningful way.

On the other hand, although pattern matching
operations proved rather flexible to retrieve context
information, in our future work, we would like to exploit
the W4 structure to better navigate the context
repository. More specifically, we would like to link
together the various knowledge atoms to form a
knowledge network where it would be possible to
navigate from one W4 tuple to the other. From this
perspective, the W fields could be used as links to other
knowledge atoms, so that it would be possible, for
example, to follow the Where link to get further
information on where a given entity is located. Our idea,
is that the possibility of querying this network, instead
of a flat tuple space, would allow much more
semantically rich questions and inferences. In particular,
new knowledge could be produced by navigating the
knowledge network and combining and aggregating
existing information into new knowledge atoms.

It is worth reporting that we already started
experimenting with this kind of extension. Specifically,

links among knowledge atoms can support localization
when the GPS signal is unavailable. Let us focus on a
simple example.

Gabriella enters a building. She can read RFID tags
around to localize (we actually placed RFID tags in our
department containing location information of where the
tag is). The knowledge atom associated to one of such
tags would be:

Who: tag:room_A
What: -
Where: lonY,latX
When: -
Reading such a tag, would cause Gabriella to localize

and produce a knowledge atom like:
Who: user:Gabriella
What: works:pervasive computing group
Where: lonY, latX
When: now
If someone wants to retrieve who is actually in a

given room, he can issue a query like:
Who: user:*
What: *
Where: room_A
When: now
This query can be answered correctly by using the

link (i.e., cross-reference) between Gabriella –
(lonY,latX) – room_A. The system first retrieves the
actual location of the room, the queries for users
located at that coordinates.

4. The “Browsing the World”
Infrastructure

To enable the concept of “browsing the world”, we
designed and implemented an infrastructure based on the
W4 model. In this section we first present the general
architecture underlying our infrastructure, then we will
detail the parts that fulfill the W4 model. In particular,
we present how we integrated our system with Google
Earth – Google Maps to display location-based context
information in an effective way.

4.1. The W4 Architecture

A general infrastructure to enable human-centric
browsing of the world must include services for data
acquisition, data integration, and data visualization. The
architecture we have implemented is organized as
follows:
1. Putting humans at the center, our architecture

considers users with portable computing devices
(i.e., laptops or PDAs), integrating localization
devices (i.e., GPS), devices to acquire information

6

from the physical world (i.e., RFID readers and
sensors), and means to connect to the Internet (i.e.,
WiFi and/or UMTS connections).

2. Data representing contextual information about the
world, there included user data, data coming from
pervasive devices, and more generally data
available on the Web, is represented by means of
W4 tuples and stored in the local tuple space to be
later accessed by application agents.

3. A number of Web-accessible tuple spaces can be
used to store/retrieve W4 information. Each space
could host information related to either a limited
geographic area (e.g., the campus tuple space), or
to a specific topic (as happens today for Google
Earth – Google Maps mash ups [Rou05]).
Application agents will decide whether an
information should be uploaded to one of the Web-
accessible tuple spaces, or if it should be kept
local.

4. A RFID reader (in the form of a wearable glove)
connected to the laptop or to the PDA via a serial
interface can be used to collect information from
RFID tags dispersed in the environment. This
information, enriched with the physical location
where it has been collected (as provided by the
GPS, device) is stored in the local tuple space.

5. Data coming from sensor network nodes
(Crossbow MICAz) can be directly accessed by a
suitable agent that collects sensed data and store
them in the data space. Data can be enriched with
the physical location of the actual sensors and
converted in the W4 format. Alternatively, sensor
data could be collected by a base-station and sent
directly to a Web-accessible tuple space.

6. Specific services can be realized by means of
application agents (i.e., autonomous software
components) running locally on the user portable
device and accessing, via the W4 model, both the
local and Web-accessible tuple spaces. Also,
application agents can interface with a local GIS
client (Google Earth or Google Maps) to turn data
into a user-centric perspective.

7. On need, agents can dynamically connect to the
Web to retrieve additional information to integrate
with that coming from the W4 tuple spaces.

The whole system has been realized using the Java
language. Web accessible tuple spaces has been
implemented through a Postgres database with spatial
extensions. The local tuple space is simply implemented
by a Java Vector. The RFID reader and the sensors are
accessed via JNI and sockets respectively. User
interface is provided by Google Earth (for laptops) and
Google Maps accessed via the Minimo browser (for

PDAs).

Figure 2. User centric infrastructure for browsing
the world

4.2. W4 Tuple Space

All the information coming from the embedded
devices (GPS, RFID and wireless sensors) is
represented by means of W4 tuples, and stored in a local
tuple space. Application agents access this space to
retrieve W4 context information supporting their
activities. Thus, application agents are completely
decoupled from low-level embedded devices, and so
they access and deal with contextual information only in
terms of the W4 model. In addition, the availability of a
local tuple space allows the system to work also in
absence of a network connection and allows to minimize
the generated data traffic (and its associated costs).
Since this tuple space has to run on portable devices, it
has been implemented by a simple Java Vector
accessible with the W4 interface as described in 3.3.

Other than the local tuple space, our infrastructure
comprises also a number of Web-accessible servers
allowing multiple users to exchange information and to
conduct global queries. In general, an application agent
will access the local tuple space and some of these
remote spaces to retrieve a detailed description of its
context . Our current implementation of a remote tuple
space consists of a Tomcat Web server giving access to
a Postgres database that store the W4 tuples. We
realized JSP and Servlets implementing the W4
interface. Our Postgres database is based on a single
table consisting of the four Ws fields. Thus, it actually

7

resemble a bag of tuples.
A general problem is for application agents to decide

which information has to be sent to the World tuple
space and which has to remain only locally confined.
This decision may depend on many factors, such as
privacy issues (e.g., a user may not be comfortable of
constantly sending his GPS location on the Web) and
scalability reasons. In our current implementation,
where the user base is extremely limited and scalability
issues are not compelling, we simply upload to the
global server all the knowledge atoms whenever the
wireless network is available.

4.3. W4 Query Engine

The W4 query engine is the component that is in
charge of managing the W4 queries, translating on need
logical values (e.g. when = now) into actual ones (when
= 2006/07/19:9:28am ± 5min), and performing pattern
matching operations. We developed two
implementations of the query engine.
1. The query engine running on the local tuple space

has been developed in Java. It basically, scans the
local Vector of tuples and uses String parsing
methods and simple geometric algorithms (to
handle Where clauses) for pattern matching.

2. The query engine running on the Web accessible
tuple space dynamically translates W4 queries in
SQL to execute them on the Postgres database. In
this implementation, query pattern matching is
supported either natively by SQL or by the Postgis
spatial extensions.

Both these two engines allow to deal with spatial queries
both in terms of actual geographic areas (expressed in
term of longitudes and latitudes), and in terms of logical
places (e.g., rooms).

It is worth emphasizing that the current
implementation is only a first prototype and the current
tuple space and query method is rather naïve. However,
in future implementations, we will enrich the current
infrastructure so as to manage, organize and integrate
data in a more complex and clever way. In particular, as
discussed in 3.4, we would like to abandon the current
flat tuple-based implementation and structure context
information in networks of knowledge. Such network-
based representation would be more naturally
distributable and could make our infrastructure more
adaptive and autonomic.

4.4. The Graphical Interface

We developed a flexible graphical subsystem that can
be easily employed on both laptops and PDAs. In

particular, our GUI interfaces with the GIS tools made
available by Google: Google Earth and Google Maps to
display retrieved context information as placemarks in a
specific geographical area (see Fig. 3, 4, 5). Our
graphical subsystem is based on the Keyhole Markup
Language (KML), fully supported by Google Earth (at
the moment only available for desktop and laptop
computers), and at least partially supported by Google
Maps and Google Maps for Mobile (that can be
accessed also by PDAs and smart phones). This language
allows to enrich geographical images coming from the
Google GIS software with custom placemarks, images,
3D objects, etc. Thus, our graphical interface just
translates proper W4 tuples in a corresponding KML
file and dynamically provides it to the Google software.
The fact of leveraging on existing and assessed
technologies (KML) is an important asset of our
implementation, since it allows users to access the
system by using consolidated platforms (Google Earth /
Google Maps).

It is worth noticing that the KML language allows
also to specify the user viewpoint on the map. This
naturally supports context awareness, in that an agent
could decide to center the map where relevant
information are located. In particular, by centering the
map on the user, the agent can provide a user-centric
representation of the world, where the user can literally
see nearby resources.

5. Application Examples
To test our model and infrastructure, we developed

some simple applications highlighting the flexibility of
the W4 representation. In all these examples, we
implemented a software agent that:
1. receives either static or dynamic queries from the

user.
2. accesses the World tuple space to retrieve suitable

context information.
3. creates a KML-formatted answer, and displays it

either in Google Earth (for laptops) or in Google
Map (for PDAs).

We are aware that the applications we developed are not
completely novel, and other researches present similar
services [Rou05]. However, our aim is to show that the
W4 model can support a variety of application in a
uniform and intuitive approach.

5.1. The Journey Map

A first application we have experimented allows to
provide context-aware information to a user equipped
with a GPS device and a RFID reader. In particular, we
focused on the scenario in which a tourist wants to

8

automatically build and maintain a diary of his journey.
To this end, the proposed service allows to keep track of
all the user movements and have them displayed on the
map of the visited places. Moreover, the support for
RFID allows to access likely-to-be-soon-available
tourist information stored in RFID tags attached to
monuments and art-pieces. From the diary perspective,
this allows to store the visited art-pieces’ location
together with their description on the journey map.

The W4 model can accommodate a number of
interesting queries in this scenario. A first query allows
to retrieve information about RFID tags being read.

Who: rfid:*
What: *
Where: lonY, latX
When: now
This query retrieves the knowledge atom describing

the tag being read (recall that there is a RFID agent that
is in charge of reading nearby tags and represent them in
W4 format). We implemented this as a static query that
the agent asks cyclically to the local tuple space. If a tag
is found, its content (properly parsed and enriched with
Web-retrieved information) is used to create a KML
placemark that will be displayed in the user interface
(see Fig. 3).

Another functionality we realized for the journey map
application allows an agent to recover user past
locations from the World tuple space. This service
could be useful to review a past tour and to check the
places where the user has been. The associated W4
query can be expressed in the form:

Who: user:Gabriella
What: *
Where: *
When: yesterday
Similarly as before, we implemented this service as a

static query. The agent queries the World tuple space,
retrieves a list of past GPS traces and displays them as a
KML-ployline in the user interface (see Fig. 5).

It is worth noticing that data coming from sensor
network could be accessed via a similar W4 queries. The
application can be configured so as to retrieve and
display environmental data coming from sensor nearby.

Figure 3. (top) The RFID-reader embedded in a
glove allows to identify tagged objects. (bottom)
The RFID tag becomes a placemark with Web-
retrieved information in the GIS software.

Figure 4. GUI showing user’s past GPS traces

9

5.2. The People Map

A user equipped with a GPS device can decide to
share his location with other users and, analogously, he
may wish to be aware of the location of others users.
For example, a group of friends can share their actual
GPS locations (represented as knowledge atoms) with
each other. This can happen either by uploading
knowledge atoms to the World repository, or by
exchanging them in ad-hoc way and storing them in the
local tuple space only. Either way, collected knowledge
atoms can be used to display users’ locations on real-
time a map (which can also highlight other interesting
Web-retrieved information for the group, such as
museums or hotels, depending on the specific interests
of the group). It is worth noticing that our current
implementation deals with privacy by leaving up to the
individual user to decide whether to: share its position
or not (and with which accuracy), make it available only
to a restricted group of users, or to make it publicly
available but only in an anonymous way.

In this application, we developed two interfaces to
access the W4 tuple space. A first interface allows to
directly compose a query in terms of the W4 fields (see
Fig. 5-top). A second interface offers a precompiled
menu that is automatically translated into a W4 query
(see Fig. 5-bottom).

In both cases, the results are then visualized at the
correct location (i.e., in the form of Google Earth /
Google Maps placemarks). Since the answer to a query
depends often on the location of the mobile users, the
results of these queries dynamically change as the users
change their location in context-aware fashion.

Figure 5. Map showing users real time locations
with neighbor university facilities. (top) PDA user
interface with the browser Minimo . (bottom) laptop
user interface with Google Earth.

6. Related Works
In recent years, several models addressing contextual

information and context-aware services have been
investigated, and several infrastructures approaching --
to some extent – our concept of “browsing the world”
have been proposed. In this section, we discuss some
relevant proposals in these areas.

6.1. Related Context Models

A first group of researches focuses on models for
context -aware information trying to create high-level
and general-purpose context representation from low-
level sensor data.

The work by Schmidt et al. [SchATT99] concentrates
on the acquisition of context data from sensors and the
processing of this raw data through a layered model.
Similarly, the Context Toolkit [DeyAS99] focuses upon
deriving context from raw data by providing abstract
components that can be connected together to capture
and process the data from sensors. Although powerful,
these approaches lack of a common semantic to
describe the data. This force developers to build new
query languages and new components that strongly
depend on the kind of information at hand. On the
contrary the W4 model provides a common semantic to
deal with multiple context information in a coherent
way.

Another group of researches focuses on developing
context models that can be easily queried. The work
proposed by Schilist et al. [SchAW94] creates a simple
context model in which information are maintained by a

10

set of environments variables that can be accessed in a
flexible way. Analogously, Henricksen et al. in
[HenIR02] analyze context by adding several features
such as the temporal aspect, information imperfection,
etc. These approaches lead to a long list of all the
characteristics of context, lacking in simplicity. In fact
it becomes very difficult to browse the list effectively.
Instead, the W4 model avoids this problem by organizing
the characteristics of the context in the 4 fields
discussed.

A third group of researchers describe context via a
set of tuples with name-value pairs. The Context Fabric
model [Hong02] is based on context tuples each
describing a single piece of context data in terms of
entities (people, place, thing), attributes (e.g. the name)
and relationship, special kinds of attributes that
reference to other entities. Similarly, Egospaces
[JulR02] provides a structured notion of context as
name-value pairs. Egospaces addresses context-aware
programming in ad-hoc environments populated of
agents by proposing an egocentric notion of context , i.e.
every agent holds a personal representation of the world
- that representation is called view. The main
shortcoming of both these approaches is that it is
difficult to browse the context description because of
the lack of a predefined structure in the data. The W4
representation, instead, strongly structure our context
information.
Finally, a very interesting proposal is presented in
[XuC05]. This work adopts in a seven-field data
structure to describe the context. The fields are: subject,
predicate, object, time, area, certainty, freshness, with
similar meaning to W4. Beyond the fields meaning, the
purpose is different: their context model is not for
browsing the world application, but for managing the
consistency between data from multiple sources.
Similar considerations apply for the system described in
[BraHCN06]. This work describes RFID tags with a
structure similar to ours. However, this is not a general
model, since it is applied to RFID tags only. The
strength of our approach, instead, is to be general
purpose and able to represent a large number of context
information.

6.2. Related Infrastructures

In the past few years, several infrastructures to
integrate context information with GIS-like tools have
been presented.

Some streams of works is simply based on
representing Web information overlaid to geographical
maps [But06, Rou05]. Examples include representations
of avian–flu-outbreak reports

[declanbutler.info/Flumaps1/avianflu.html], celebrity
sightings [www.gawker.com/stalker] and real estate
information [www.forsalebyownercenter.com/google-
earth-real-estate.aspx]. More dynamic applications,
combine collaborative technologies (e.g., blogs and
wiki) to GIS tools. MapWiki [TerK06], for example, is a
Wiki collaborative environment where all the contents
are located on a map. The contents can be edited and
moved across the map and accessed on a location basis.
All the above projects represents promising starting
points of a future in which a wide range of information
will be properly conveyed by novel GIS services.
However, most of the above researches are special
purpose and lack of a general architecture to manage and
integrate pervasive, Web and GIS data. Furthermore, in
opposition at our user-centric vision, their aim is to
produce a centralized view of the world.

Other works concerned systems characterized by the
presence of exploratory users and a surrounding
environment. Users move across the environment and
access information exploiting different type of
embedded sensors. Example of this systems are
TinyLime [CuGG05] and the system proposed in
[MamQZ06].

TinyLime is a middleware for wireless sensor
networks that departs from the traditional setting where
sensor data is collected by a central monitoring station,
and enables instead multiple mobile monitoring stations
to access the sensors in their proximity and share the
collected data through wireless links. Similarly, the
work in [MamQZ06] describes the implementation of a
tuple-based distributed memory realized with the use of
RFID technology. By accessing in a wireless way the re-
writable memory of such RFID tags according to a
tuple-based access model, it is possible to enforce
mobile and pervasive coordination and improve our
interactions with the physical world. From a certain
point of view we can consider these systems as “World
Browsing” systems. Nevertheless we can say that our
new system is certainly more complete and structured.
These systems indeed base their functionality on
specific technologies (either sensors or RFID tags),
they aren’t based on a well-structured context model and
further they don’t exploit information coming from the
Web (as our does).

A further interesting project is FLAME2008
[WeissVoG04]. Users through their PDA access to
services (related to the 2008 Olympics games in
Beijing) expressly fitted on their needs: FLAME2008
elaborates them on the base of activities and situations
carried out by the user. The infrastructure is very
interesting, in particular for its use of ontologies, and
appears to be very complete. Nevertheless we noticed

11

that it’s too bound to a specific application domain and it
doesn’t perform any mechanism for generate and store
new. Our model is certainly more user centric and it has
been developed to adapt itself to a generic context, and
to be fully functional even without the support of a
centralized infrastructure.

7. Conclusions and Future Works
In this paper we presented a simple model and

infrastructure to (i) access context information coming
from embedded devices and Web resources in a
comprehensive framework, and (ii) to effectively
visualize it –possibly with mobile devices -- with novel
GIS tools. Our future research in this area will mainly
focus on two aspects. On the one hand, we will try to
integrate ontologies in our model to improve its
expressiveness and flexibility. In particular, ontologies
will allow more semantic forms of pattern matching
among W4 tuples. On the other hand, we will try to go
further than the current flat (i.e., tuple space) data
organization and link knowledge atoms in suitable
knowledge networks allowing a better and more
semantic navigation of context information.

References

[BraHCN06] J. Bravo, R. Hervas, G. Chavira ,S. Nava,
“Modeling Contexts by RFID-Sensor Fusion”,
IEEE International Conference on Pervasive
Computing and Communications Workshops,
Pisa, Italy, 2006.

[But06] D. Butler, “Virtual Globe: the Web-Wide
World”, Nature, 439:776-778, Feb 2006.

[Cas06] G. Castelli, A. Rosi, M. Mamei, F. Zambonelli,
“Browsing the World: Bridging Pervasive
Computing and the Web”, International
Workshop on Ubiquitous Information Systems,
Munster, Germany, 2006.

[ChoK03] C.-Y. Chong, S. P. Kumar, “Sensor Networks:
Evolution, opportunities, and challenges”,
Proceedings of the IEEE, 91(8):1247-1256,
2003.

[CuGG05] C.Curino, M. Giani, M. Giorgetta, A. Giusti,
A.L. Murphy, G.Picco: “Mobile Data
Collection in Sensor Networks: The TinyLIME
Middleware”; International Conference on
Pervasive Computing and Communications,
Kauai Island (HW), USA, 2005.

[DeyAS99] Anind K. Dey, Gregory D. Abowd, Daniel
Salber. “A Context-Based Infrastructure for
Smart Environments”, International Workshop

on Managing Interactions in Smart
Environments, Dublin, Ireland, 1999.

[Esp01] F. Espinoza, P. Persson, A. Sandin, H. Nystrom,
E. Cacciatore, M. Bylund, “GeoNotes: Social
and Navigational Aspects of Location-Based
Information Systems”, International
Conference on Ubiquitous Computing, Atlanta
(GE), USA, 2001.

[HenIR02] K. Henricksen , J. Indulska , A.
Rakotonirainy, Modeling Context Information
in Pervasive Computing Systems, International
Conference on Pervasive Computing, Zurich,
Switzerland, 2002.

[Hong02] J. Hong., “The Context Fabric: An
Infrastructure for Context-Aware Computing.”,
Conference on Computer Human Interaction,
Minneapolis (MN), USA, 2002

[JulR02] C. Julien , G. Roman, “Egocentric context-
aware programming in ad hoc mobile
environments”, Symposium on Foundations of
Software Engineering, Charleston (SC) , USA,
2002.

[MamQZ06] M. Mamei, R. Quaglieri, F. Zambonelli,
“Making Tuple Spaces Physical with RFID
Tags”, Symposium on Applied Computing,
Dijon, France, 2006.

[Rou05]W. Roush, “Killer Maps”, Technology Review,
11 September 2005

[Sat05] I. Satoh, “A Location Model for Pervasive
Computing Environments”, International
Conference on Pervasive Computing and
Communications , Kauai Island (HW), USA,
2005.

[SchATT99] A. Schmidt , K. A. Aidoo , A. Takaluoma ,
U. Tuomela , K. Van Laerhoven , W. Van de
Velde, “Advanced Interaction in Context”,
International Symposium on Handheld and
Ubiquitous Computing, Karlsruhe, Germany,
1999.

[SchAW94] B. Schilit, N. Adams, and R. Want.
“Context-aware computing applications”.
Workshop on Mobile Computing Systems and
Applications, English Lake District, UK, 1994.

[TerK06] Y. Teranishi, J. Kamahara, S. Shimojo,
“MapWiki: A Ubiquitous Collaboration
Environment on Shared Maps”, International
Symposium on Applications and the Internet
Workshops, Phoenix (AZ), USA, 2006.

[Wan06] R. Want, “An Introduction to RFID
Technology”, IEEE Pervasive Computing,
5(1):25-33, 2006.

[WeissVoG04] N. Weißenberg, A. Voisard, Rüdiger
Gartmann, “Using Ontologies in Personalized

12

Mobile Applications”, International Symposium
on GIS, Washington (DC), USA, 2004.

[XuC05] Chang Xu , S. C. Cheung, “Inconsistency
detection and resolution for context-aware
middleware support”, International Symposium
on Foundations of Software Engineering,
Lisbon, Portugal, 2005.

