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Abstract 
The imminent mass deployment of pervasive 
computing technologies such as sensor networks and 
RFID tags, together with the increasing participation 
of the Web community in feeding geo-located 
information within tools such as Google Earth, will 
soon make available an incredible amount of 
information about the physical and social worlds and 
their processes. This opens up the possibility of 
exploiting all such information for the provisioning of 
pervasive context-aware services for “browsing the 
world”, i.e., for facilitating users in gathering 
information about the world, interacting with it, and 
understanding it. However, for this to occur, proper 
models and infrastructures must be developed. In this 
paper we propose a simple model for the 
representation of contextual information, the design 
and implementation of a general infrastructure for 
browsing the world, as well as some exemplar  
services we have implemented over it.  

Keywords: Context-awareness, Location-dependent 
Services, Middleware, Sensor Networks, RFID Tags.     

1. Introduction 

Two apparently disjoint trends motivate this work. On 
the one hand, the imminent mass diffusion of pervasive 
computing technologies such as sensor networks 
[ChoK03] and RFID tags [Wan06] will soon make 
available an incredible amount of real-time information 
about the physical world, its processes, and its objects. 
On the other hand, the dramatic success of participatory 
Web tools (aka Web 2.0 technologies) is feeding the 
Web with information of any kind about any topic. In 
particular, mapping tools such as Google Earth and 
Google Maps get continuously enriched by geo-located 
information coming from very diverse social 
communities and related to a variety of facts and events 
situated in the world [But06].  

Overall, both the above trends contribute to 
accumulate information that can be  potentially used to 
build real-time and historical models of a number of 
facts and processes happening in the world. More 
pragmatically, the possibility of acquiring detailed 
digital information about the surrounding context opens 
up the possibility of exploiting all such information for 
“browsing the world” [Cas06]. The concept of browsing 
the world considers that, by properly integrating 
information about the surrounding world coming from 
both pervasive devices and form the Web, it will be 
possible for users to gather contextualized relevant 
information, and for services to effectively support user 
activities related to interacting with the physical world 
in a context-aware way.  

However, considering that the amount of available 
information from a variety of sources could become 
overwhelming, its effective exploitation by users and 
services calls for proper models to represent such data 
in an expressive yet simple-to-be-manipulated way, and 
for proper software infrastructure to organize and 
provide access to it. Accordingly, the contribution of 
this paper is twofold.  

First, we  propose a simple model to represent 
contextual information about the physical world, for the 
use of both users’ querying activities and context-aware 
services. The model, which we call “W4”, is based on 
the consideration that most information about the world 
can be simply represented in terms of four “W”s – Who, 
What, Where, When – and that such a representation 
enables for very expressive , and flexible data usages.   

Second, we describe the design and implementation 
of a general middleware infrastructure for browsing the 
world, facilitating the development and supporting the 
activities of general-purpose context-aware pervasive 
services. The infrastructure supports PDAs and laptops 
access to information coming from both pervasive 
devices and the Web, provides for representation and 
organization of data in W4 terms, makes available a Java 
interface for users’ queries and for services access to 
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such data, and it is integrated with both Google Earth / 
Google Maps for the sake of effective  user interfacing. 

The remainder of this paper is organized as follows. 
Section 2 better details the general scenario of browsing 
the world and the challenges it implies. Section 3 
presents the W4 model. Section 4 details the 
implemented software infrastructure. Section 5 presents 
some services we have implemented on top of our 
system. Section 6 discusses related work in the area. 
Section 7 concludes. 

2. Browsing the World 

In this section, we better define the scenario in which 
our research situates, by properly identifying the 
components involved in the “browsing the world” vision, 
and by discussing the associated key challenges. 

2.1. Scenarios 

As stated in the introduction, in the near future, our 
everyday environments will be densely populated by a 
variety of embedded devices such as sensor networks 
[ChoK03], RFID tags [Wan06]. Users in an environment 
will be able, via wireless interfaces mounted on some 
wearable computing device (e.g. a PDA or a smart 
phone), to directly access devices in their proximities to 
gather information about phenomena occurring in the 
surroundings or (as in the case of RFID tags attached to 
objects) about nearby physical objects. In addition, users 
will be able to access to the Web via some wireless 
communication technology, to dynamically retrieve any 
needed information. Other than accessing “traditional” 
Web information (e.g., html pages and Web services), 
this also enables users to access geo-located 
information concerning specific sites geographical 
areas and general facts and annotations about them, as 
they can continuously provided via collaborative Web 
2.0 technologies by the Web community [Esp01, 
TerK06]. In addition, it enables users to access 
information generated by sensors and embedded devices 
(far in the world or close to him but beside his direct 
access).  

Users, in turn, can decide to unveil (totally or to 
some limited extent) their presence in an environment, 
by making somehow available to the public their 
identity, location, and/or activities. This can occur by 
dynamically uploading such information on the Web, or 
by making it available to other via ad-hoc connections, 
or even by uploading it into surrounding pervasive 
devices. In this latter case, pervasive devices such as 
RFID tags would act as a sort distributed memory 
infrastructure [MamQZ06]. The location of users will be 

always available, either because they will carry on a GPS 
or because of location can be inferred by the patterns of 
access to pervasive devices (e.g., the access to a RFID 
tag with a known location implicitly determines the 
location of the user [Sat05]) (see Fig. 1). 

On the basis of the above considerations, the concept 
of browsing the world, in general terms, consider the 
possibility of navigating in an information space that – 
by properly merging and integrating information coming 
from both pervasive devices and the Web can represent a 
detailed model of the world, comprising both present 
and historic fine-grained geo-located data about the 
world, its entities, its processes, and its social life. In 
context -aware user-centric terms, which are the ones of 
more interest here, the concept of browsing the world 
implies the possibility for users in an environment to 
access and navigate meaningful information about the 
surrounding physical world, and for software services to 
access and manipulate such information to enforce 
various degree of context-awareness and context-
adaptation.  

 
Figure 1. The general scenario of browsing the 
world. 

2.2. Challenges 

From the merely technological viewpoint, the “browsing 
the world” vision could be already turned into reality. 
Indeed, novel services and Web sites that can be 
included in the “browsing the world” category appear 
every day [Cas06]. However, beside specific service 
implementations, for browsing the world to become 
common practice based on sound engineered activities, 
several challenges remains to be addressed. In 
particular: 
1. It would be fundamental to create a general model 

to represent context information and to build a 
world model. Spatial information is important but it 
is not enough. Temporal information must be 
included, as well as information describing the 



3 

activities taking place in the world. The model 
should enable to deal with incomplete information, 
and should allow navigation among context 
information on the basis of what is available at a 
given time. 

2. It would be important to have a general 
infrastructure supporting the model that should 
work without requiring or committing to the 
availability of specific technologies. The 
infrastructure should be general-purpose, 
autonomic and adaptable. Relying on this 
infrastructure, the activities of browsing the world 
should not be compromised because of say, the 
temporal unavailability of an Internet connection or 
the unavailability of a GPS, or of an RFID reader. 
Consequently, applications built on that 
infrastructure should not mandate the availability of 
specific information, but should exploit whatever 
available information on a best effort basis. 

Beyond the horizon, it would be important for such a 
general model to enable easy processing of data, to 
facilitate the identification of links between isolated 
bunch of information. This would enable the creation of 
complex knowledge networks, and possibly would 
promote the creation of “new knowledge”, as it can be 
derived by inference from existing information. The 
attempt to face the above challenges, by defining a 
simple yet effective model for context data and a 
general software infrastructure, as preliminary and 
incomplete as it can be, is the exact goal of our work. 

3. The W4 Context Model 

We propose a simple model in which context data is 
expressed by a four field structure: Who, What, Where and 
When. Such a model appears effective in a number of 
circumstances since it points out some of the main 
topics that are involved in human thinking: who is 
acting? What is he/she/it doing? Where and when the 
action takes place?  

3.1. Overview 

The goal of our proposal is to develop a general 
model to manage contextual information. Such 
information will come from multiple and heterogeneous 
sources, and would be related to a large number of 
situations ranging from the description of physical 
properties in geographic areas, to social facts and 
processes happening in the world. 

In particular, we developed a model in which context 
data is described by means of a 4-fields tuple: (Who, 
What, Where, When). We chose this structure because 

of its evident meaning and flexibility. In fact, a W4-tuple 
allows to express a situation in a rather natural and 
human-like way, e.g., “someone or something (Who) 
does some activity (What) in a certain place (Where) at 
a specific time (When)”. We call each of these tuples a 
knowledge atom to describe the fact they represent an 
atomic unit of context information.  

Knowledge atoms are created by a number of 
software agents running on different (possibly 
embedded) devices, and will be stored in a suitable 
shared data space (in section 4, we detail our actual 
implementation of this space). Knowledge atoms can be 
retrieved via a pattern matching mechanism, and queries 
can be expressed as W4 tuples with empty fields (formal 
parameters). Application agents (ranging from context-
aware service providers, to simple interfaces supporting 
users in browsing information) will access the shared 
space to retrieve those context information that are 
suitable for their application task. 

3.2. W4 Data Representation and Generation 

In the following we detail the four-fields (Who, 
What, Where, When) that constitute our context 
representation. 
- Who is the subject described by the context 

structure. Who may be a human person (e.g., 
Gabriella) or an unanimated part of the context (e.g., 
a RFID tag). The Who field is represented by a 
string with an associated namespace that defines the 
“kind” of entity that is represented. For example, 
valid entries for this field are: “person:Gabriella”, 
“tag:tag#567”.  

- What is the activity performed by the subject. This 
information can be either inferred from other 
context parameters (e.g., an accelerometer can 
reveal that the user is jogging), or it can be 
explicitly supplied by the user. This field is 
represented as a string containing a predicate-
complement statement. For example, valid entries 
for the What field are: “read:book”, “work:pervasive 
computing group”, “read:temperature=23”. 

- Where is the location to which the context relates. 
In our model the location may be a physical point 
represented by its coordinates (longitude, latitude), 
a geographic region (specifically, our model adopts 
the Postgis language to describe such a region 
[postgis.refractions.net], or it can also be 
represented as a logical place. Logical places like 
“campus” or “bank” are mapped in their actual 
location by using a fixed dictionary. Logical places 
like “here” are mapped via simple algorithms that 
take into account the user current GPS location. It 
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is worth noticing that this kind of mapping enforces 
context-awareness, the same “here” information get 
multiple meanings depending on the user actual 
location.  

- When is the time  duration to which the context 
relates. It may be an exact range (e.g., 
“2006/07/19:09.00am - 2006/07/19:10.00am”), a 
concise description of a range (e.g., 9:28am), or 
even a logical value (e.g., “now”, “today”, 
“yesterday”, “before”). Exact values are represented 
with a “begin-time-of-day – end-time-of-day” 
expression. Concise description and logical values 
are mapped via simple algorithms to the 
corresponding exact range. For example 9:28am = 
2006/07/19:9:28am ± 5min. Again, it is important 
to emphasize that concise time descriptions and 
logical times are contextual operators, their 
meaning depends on the time the query is actually 
issued. 

Software agents are in charge of creating and 
inserting knowledge atoms in the shared space. Agents 
sense information from several devices (e.g. RFID tag, 
GPS devices, Web services) and combine them in order 
to produce a concise and effective description of what is 
happening in terms of a W4 tuple. The following 
examples illustrates the atom generation process. 

Gabriella is walking in the campus’ park. An agent 
running on her PDA can periodically create an atom 
describing her situation. 

Who: user:Gabriella  
What: works:pervasive computing group 
Where: lonY, latX 
When: now 
The Who and What information are entered directly 

by the user at the login of the agent application, Where 
and When are dynamically provided by the GPS device. 

Gabriella’s PDA is connected with a RFID tag reader. 
A specific RFID agent controls the reader and handles 
the associated events. When a tag is read, the RFID agent 
creates a knowledge atom to store the tag information. 
In particular, either the tag would contain its own 
description, or the tag ID would be resolved in a 
dictionary (mapping tag IDs into the associated 
descriptions) to retrieve  associated data. This 
information, together with the “tag” namespace will fill 
the Who field. What is left unspecified. The agent 
accesses the GPS to retrieve location of the tag and fill 
the Where field. Finally, it completes the When field 
with the logical value “now”. 

Who: tag:statue of Ludovico Ariosto 
What: - 
Where: lonY, latX 

When: now 

3.3. W4 Interface 

Since knowledge atoms will be stored in a shared data 
space, our model requires two fundamental operations: 
one for injecting knowledge atoms into the shared 
space, and one for retrieving atoms from it. In particular, 
taking inspiration from tuple-space approaches, we 
defined the following API. 

void inject(KnowledgeAtom a);  
KnowledgeAtom[] read(KnowledgeAtom 
a);  
The inject  operation is trivial: an agent accesses the 

shared data space and store a knowledge atom there. 
The read operation, instead, requires some more 

discussion. The W4 model is suitable not only to 
represent context information, but for questioning too. 
A query will be represented by a W4 tuple with missing 
values (i.e., fields left unspecified). The read operation 
triggers a patter matching procedure between the query 
and the knowledge atoms that already populate the data 
space. Matching atoms are returned as results of the 
query. In this process, it is important to understand that 
the pattern matching operations work rather differently 
from the traditional tuple space model. In fact, our 
proposal can rely on the W4 structure to enforce more 
expressive  pattern matching operations  that have a 
different meaning for the various Ws. 
- Who and What. Pattern matching operations in 

these two fields is based on string-based regular 
expressions. For example, a patter like “user:*” will 
match any user. 

- Where. Pattern matching in this field involves 
spatial operations (again inspired by Postgis 
operations). Basically, the template defines a 
bounding box. Everything within the bounding box, 
matches the template. For example, a pattern like 
“circle,center(lonY,latX),radius:500m” defines a 
circle centered at (lonY, latX) with a 500m radius. 
Tuples with a Where field within the circle will 
match the template. Logical places have to be 
translated into actual spatial regions before going 
through the pattern matching.    

- When. In this kind of pattern matching, the template 
defines a time interval. Everything that happened 
within that interval matches the template. Concise 
time descriptions and logical times will be 
converted into actual time interval before pattern 
matching.  

The following two examples illustrate the querying 
process. 

Gabriella is walking in the campus, and wants to know 
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if some colleague is near. She will ask (read operation): 
Who: user:* 
What: works:pervasive computing group 
Where: circle,center(lonY,latX),radius:500m 
When: now 

Analogously, Gabriella can ask if some of her 
colleagues has gone to work in the morning: 

Who: user:* 
What: works:pervasive computing group 
Where: office 
When: 2006/07/19:09.00am - 
2006/07/19:10.00am 
It is important to emphasize that returned answers 

have not to be “complete” W4 atoms. The pattern 
matching mechanism also allows matches between 
incomplete information. Thus, following this approach, 
applications are based on components entering complete 
and incomplete context information and getting in 
response refined (but possibly still incomplete) 
information.  

3.4. Future Extensions 

There are two important extensions that could be 
valuably added to the model.  

On the one hand, the current model is somewhat 
limited by the lack of a reference ontology that could 
add semantic relationships to the concepts in the W-
fields. With such an ontology in place, knowledge atoms 
could be related also if their fields  do not match exactly. 
Moreover, application agents would be able to 
manipulate the retrieved context information in a more 
meaningful way.  

On the other hand, although pattern matching 
operations proved rather flexible to retrieve context 
information, in our future work, we would like to exploit 
the W4 structure to better navigate the context 
repository. More specifically, we would like to link 
together the various knowledge atoms to form a 
knowledge network where it would be possible to 
navigate from one W4 tuple to the other. From this 
perspective, the W fields could be used as links to other 
knowledge atoms, so that it would be possible, for 
example, to follow the Where link to get further 
information on where a given entity is located. Our idea, 
is that the possibility of querying this network, instead 
of a flat tuple space, would allow much more 
semantically rich questions and inferences. In particular, 
new knowledge could be produced by navigating the 
knowledge network and combining and aggregating 
existing information into new knowledge atoms. 

It is worth reporting that we already started 
experimenting with this kind of extension. Specifically, 

links among knowledge atoms can support localization 
when the GPS signal is unavailable. Let us focus on a 
simple example. 

Gabriella enters a building. She can read RFID tags 
around to localize (we actually placed RFID tags in our 
department containing location information of where the 
tag is). The knowledge atom associated to one of such 
tags would be: 

Who: tag:room_A 
What: - 
Where: lonY,latX 
When: - 
Reading such a tag, would cause Gabriella to localize 

and produce a knowledge atom like: 
Who: user:Gabriella  
What: works:pervasive computing group 
Where: lonY, latX  
When: now 
If someone wants to retrieve who is actually in a 

given room, he can issue a query like: 
Who: user:*  
What: * 
Where: room_A 
When: now 
This query can be answered correctly by using the 

link (i.e., cross-reference) between Gabriella – 
(lonY,latX) – room_A. The system first retrieves the 
actual location of the room, the queries for users 
located at that coordinates.  

4. The “Browsing the World” 
Infrastructure 

To enable the concept of “browsing the world”, we 
designed and implemented an infrastructure based on the 
W4 model. In this section we first present the general 
architecture underlying our infrastructure, then we will 
detail the parts that fulfill the W4 model. In particular, 
we present how we integrated our system with Google 
Earth – Google Maps to display location-based context 
information in an effective way. 

4.1. The W4 Architecture 

A general infrastructure to enable human-centric 
browsing of the world must include services for data 
acquisition, data integration, and data visualization. The 
architecture we have implemented is organized as 
follows: 
1. Putting humans at the center, our architecture 

considers users with portable computing devices 
(i.e., laptops or PDAs), integrating localization 
devices (i.e., GPS), devices to acquire information 
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from the physical world (i.e., RFID readers and 
sensors), and means to connect to the Internet (i.e., 
WiFi and/or UMTS connections). 

2. Data representing contextual information about the 
world, there included user data, data coming from 
pervasive devices, and more generally data 
available on the Web, is represented by means of 
W4 tuples and stored in the local tuple space to be 
later accessed by application agents. 

3. A number of Web-accessible tuple spaces can be 
used to store/retrieve W4 information. Each space 
could host information related to either a limited 
geographic area (e.g., the campus tuple space), or 
to a specific topic (as happens today for Google 
Earth – Google Maps mash ups [Rou05]). 
Application agents will decide whether an 
information should be uploaded to one of the Web-
accessible tuple spaces, or if it should be kept 
local.  

4. A RFID reader (in the form of a wearable glove) 
connected to the laptop or to the PDA via a serial 
interface can be used to collect information from 
RFID tags dispersed in the environment. This 
information, enriched with the physical location 
where it has been collected (as provided by the 
GPS, device) is stored in the local tuple space.  

5. Data coming from sensor network nodes 
(Crossbow MICAz) can be directly accessed by a 
suitable agent that collects sensed data and store 
them in the data space. Data can be enriched with 
the physical location of the actual sensors and 
converted in the W4 format. Alternatively, sensor 
data could be collected by a base-station and sent 
directly to a Web-accessible tuple space.  

6. Specific services can be realized by means of 
application agents (i.e., autonomous software 
components) running locally on the user portable 
device and accessing, via the W4 model, both the 
local and Web-accessible tuple spaces. Also, 
application agents can interface with a local GIS 
client (Google Earth or Google Maps) to turn data 
into a user-centric perspective. 

7. On need, agents can dynamically connect to the 
Web to retrieve additional information to integrate 
with that coming from the W4 tuple spaces. 

The whole system has been realized using the Java 
language. Web accessible tuple spaces has been 
implemented through a Postgres database with spatial 
extensions. The local tuple space is simply implemented 
by a Java Vector. The RFID reader and the sensors are 
accessed via JNI and sockets respectively. User 
interface is provided by Google Earth (for laptops) and 
Google Maps accessed via the Minimo browser (for 

PDAs). 

 
Figure 2. User centric infrastructure for browsing 
the world 

4.2. W4 Tuple Space 

All the information coming from the embedded 
devices (GPS, RFID and wireless sensors) is 
represented by means of W4 tuples, and stored in a local 
tuple space. Application agents access this space to 
retrieve W4 context information supporting their 
activities. Thus, application agents are completely 
decoupled from low-level embedded devices, and so 
they access and deal with contextual information only in 
terms of the W4 model. In addition, the availability of a 
local tuple space allows the system to work also in 
absence of a network connection and allows to minimize 
the generated data traffic (and its associated costs). 
Since this tuple space has to run on portable devices, it 
has been implemented by a simple Java Vector 
accessible with the W4 interface as described in 3.3. 

Other than the local tuple space, our infrastructure 
comprises also a number of Web-accessible servers 
allowing multiple users to exchange information and to 
conduct global queries. In general, an application agent 
will access the local tuple space and some of these 
remote spaces to retrieve a detailed description of its 
context . Our current implementation of a remote tuple 
space consists of a Tomcat Web server giving access to 
a Postgres database that store the W4 tuples. We 
realized JSP and Servlets implementing the W4 
interface. Our Postgres database is based on a single 
table consisting of the four Ws fields. Thus, it actually 
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resemble a bag of tuples. 
A general problem is for application agents to decide 

which information has to be sent to the World tuple 
space and which has to remain only locally confined. 
This decision may depend on many factors, such as 
privacy issues (e.g., a user may not be comfortable of 
constantly sending his GPS location on the Web) and 
scalability reasons. In our current implementation, 
where the user base is extremely limited and scalability 
issues are not compelling, we simply upload to the 
global server all the knowledge atoms whenever the 
wireless network is available.  

4.3. W4 Query Engine 

The W4 query engine is the component that is in 
charge of managing the W4 queries, translating on need 
logical values (e.g. when = now) into actual ones (when 
= 2006/07/19:9:28am ± 5min), and performing pattern 
matching operations. We developed two 
implementations of the query engine. 
1. The query engine running on the local tuple space 

has been developed in Java. It basically, scans the 
local Vector of tuples and uses String parsing 
methods and simple geometric algorithms (to 
handle Where clauses) for pattern matching. 

2. The query engine  running on the Web accessible 
tuple space dynamically translates W4 queries in 
SQL to execute them on the  Postgres database. In 
this implementation, query pattern matching is 
supported either natively by SQL or by the Postgis 
spatial extensions. 

Both these two engines allow to deal with spatial queries 
both in terms of actual geographic areas (expressed in 
term of longitudes and latitudes), and in terms of logical 
places (e.g., rooms).  

It is worth emphasizing that the current 
implementation is only a first prototype  and the current 
tuple space and query method is rather naïve. However, 
in future implementations, we will enrich the current 
infrastructure so as to manage, organize and integrate 
data in a more complex and clever way. In particular, as 
discussed in 3.4, we would like to abandon the current 
flat tuple-based implementation and structure context 
information in networks of knowledge. Such network-
based representation would be more naturally 
distributable and could make our infrastructure more 
adaptive and autonomic. 

4.4. The Graphical Interface 

We developed a flexible graphical subsystem that can 
be easily employed on both laptops and PDAs. In 

particular, our GUI interfaces with the GIS tools made 
available by Google: Google Earth and Google Maps to 
display retrieved context information as placemarks in a 
specific geographical area (see Fig. 3, 4, 5). Our 
graphical subsystem is based on the Keyhole Markup 
Language (KML), fully supported by Google Earth (at 
the moment only available for desktop and laptop 
computers), and at least partially supported by Google 
Maps and Google Maps for Mobile (that can be 
accessed also by PDAs and smart phones). This language 
allows to enrich geographical  images coming from the 
Google GIS software with custom placemarks, images, 
3D objects, etc. Thus, our graphical interface just 
translates proper W4 tuples in a corresponding KML 
file and dynamically provides it to the Google software. 
The fact of leveraging on existing and assessed 
technologies (KML) is an important asset of our 
implementation, since it allows users to access the 
system by using consolidated platforms (Google Earth / 
Google Maps).  

It is worth noticing that the KML language allows 
also to specify the user viewpoint on the map. This 
naturally supports context awareness, in that an agent 
could decide to center the map where relevant 
information are located. In particular, by centering the 
map on the user, the agent can provide a user-centric 
representation of the world, where the user can literally 
see nearby resources. 

5. Application Examples 
To test our model and infrastructure, we developed 

some simple applications highlighting the flexibility of 
the W4 representation. In all these examples, we 
implemented a software agent that: 
1. receives either static or dynamic queries from the 

user. 
2. accesses the World tuple space to retrieve suitable 

context information. 
3. creates a KML-formatted answer, and displays it 

either in Google Earth (for laptops) or in Google 
Map (for PDAs). 

We are aware that the applications we developed are not 
completely novel, and other researches present similar 
services [Rou05]. However, our aim is to show that the 
W4 model can support a variety of application in a 
uniform and intuitive approach. 

5.1. The Journey Map  

A first application we have experimented allows to 
provide context-aware information to a user equipped 
with a GPS device and a RFID reader. In particular, we 
focused on the scenario in which a tourist wants to 
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automatically build and maintain a diary of his journey.  
To this end, the proposed service allows to keep track of 
all the user movements and have them displayed on the 
map of the visited places. Moreover, the support for 
RFID allows to access likely-to-be-soon-available 
tourist information stored in RFID tags attached to 
monuments and art-pieces. From the diary perspective, 
this allows to store the visited art-pieces’ location 
together with their description on the journey map. 

The W4 model can accommodate a number of 
interesting queries in this scenario. A first query allows 
to retrieve information about RFID tags being read. 

Who: rfid:* 
What: * 
Where: lonY, latX 
When: now  
This query retrieves the knowledge atom describing 

the tag being read (recall that there is a RFID agent that 
is in charge of reading nearby tags and represent them in 
W4 format). We implemented this as a static query that 
the agent asks cyclically to the local tuple space. If a tag 
is found, its content (properly parsed and enriched with 
Web-retrieved information) is used to create a KML 
placemark that will be displayed in the user interface 
(see Fig. 3).  

Another functionality we realized for the journey map 
application allows an agent to recover user past 
locations from the World tuple space. This service 
could be useful to review a past tour and to check the 
places where the user has been. The associated W4 
query can be expressed in the form: 

Who: user:Gabriella 
What: * 
Where: * 
When: yesterday 
Similarly as before, we implemented this service  as a 

static query. The agent queries the World tuple space, 
retrieves a list of past GPS traces and displays  them as a 
KML-ployline in the user interface (see Fig. 5).  

It is worth noticing that data coming from sensor 
network could be accessed via a similar W4 queries. The 
application can be configured so as to retrieve and 
display environmental data coming from sensor nearby. 

 

 
 

 
Figure 3. (top) The RFID-reader embedded in a 
glove allows to identify tagged objects. (bottom) 
The RFID tag becomes a placemark with Web-
retrieved information in the GIS software. 

 
Figure 4. GUI showing user’s past GPS traces 



9 

5.2. The People Map 

A user equipped with a GPS device can decide to 
share his location with other users and, analogously, he 
may wish to be aware of the location of others users. 
For example, a group of friends can share their actual 
GPS locations (represented as knowledge atoms) with 
each other. This can happen either by uploading 
knowledge atoms to the World repository, or by 
exchanging them in ad-hoc way and storing them in the 
local tuple space only. Either way, collected knowledge 
atoms can be used to display users’ locations on real-
time a map (which can also highlight other interesting 
Web-retrieved information for the group, such as 
museums or hotels, depending on the specific interests 
of the group). It is worth noticing that our current 
implementation deals with privacy by leaving up to the 
individual user to decide whether to: share its position 
or not (and with which accuracy), make it available only 
to a restricted group of users, or to make it publicly 
available but only in an anonymous way.  

In this application, we developed two interfaces to 
access the W4 tuple space. A first interface allows to 
directly compose a query in terms of the W4 fields (see 
Fig. 5-top). A second interface offers a precompiled 
menu that is automatically translated into a W4 query 
(see Fig. 5-bottom). 

In both cases, the results are then visualized at the 
correct location (i.e., in the form of Google Earth / 
Google Maps placemarks). Since the answer to a query 
depends often on the location of the mobile users, the 
results of these queries dynamically change as the users 
change their location in context-aware fashion. 

 

 
Figure 5. Map showing users real time locations 
with neighbor university facilities. (top) PDA user 
interface with the browser Minimo . (bottom) laptop 
user interface with Google Earth. 

6. Related Works 
In recent years, several models addressing contextual 

information and context-aware services have been 
investigated, and several infrastructures approaching --  
to some extent – our concept of “browsing the world” 
have been proposed. In this section, we discuss some 
relevant proposals in these areas. 

6.1. Related Context Models 

A first group of researches focuses on models for 
context -aware information trying to create high-level 
and general-purpose context representation from low-
level sensor data. 

The work by Schmidt et al. [SchATT99] concentrates 
on the acquisition of context data from sensors and the 
processing of this raw data through a layered model.  
Similarly, the Context Toolkit [DeyAS99] focuses upon 
deriving context from raw data by providing abstract 
components that can be connected together to capture 
and process the data from sensors. Although powerful, 
these approaches lack of a common semantic to 
describe the data. This force developers to build new 
query languages and new components that strongly 
depend on the kind of information at hand. On the 
contrary the W4 model provides a common semantic to 
deal with multiple context information in a coherent 
way.  

Another group of researches focuses on developing 
context models that can be easily queried. The   work 
proposed by Schilist et al. [SchAW94] creates a simple 
context model in which information are maintained by a 
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set of environments variables that can be accessed in a 
flexible way. Analogously, Henricksen et al. in 
[HenIR02] analyze context by adding several features 
such as the temporal aspect, information imperfection, 
etc. These approaches lead to a long list of all the 
characteristics of context, lacking in simplicity. In fact 
it becomes very difficult to browse the list effectively. 
Instead, the W4 model avoids this problem by organizing 
the characteristics of the context in the 4 fields 
discussed. 

A third group of researchers describe context via a 
set of tuples with name-value pairs. The Context Fabric 
model [Hong02] is based on context tuples each 
describing a single piece of context data in terms of  
entities (people, place, thing), attributes  (e.g. the name) 
and relationship, special kinds of attributes that 
reference to other entities. Similarly, Egospaces 
[JulR02] provides a structured notion of context as 
name-value pairs. Egospaces addresses context-aware 
programming in ad-hoc environments populated of 
agents by proposing an egocentric notion of context , i.e. 
every agent holds a personal representation of the world 
- that representation is called view. The main 
shortcoming of both these approaches is that it is 
difficult to browse the context description because of 
the lack of a predefined structure in the data. The W4 
representation, instead, strongly structure our context 
information. 
Finally, a very interesting proposal is presented in 
[XuC05]. This work adopts in a seven-field data 
structure to describe the context. The fields are: subject, 
predicate, object, time, area, certainty, freshness, with 
similar meaning to W4. Beyond the fields meaning, the 
purpose is different: their context model is not for 
browsing the world application, but for managing the 
consistency between data from multiple sources. 
Similar considerations apply for the system described in  
[BraHCN06]. This work describes RFID tags with a 
structure similar to ours. However, this is not a general 
model, since it is applied to RFID tags only. The 
strength of our approach, instead, is to be general 
purpose and able to represent a large number of context 
information. 

6.2. Related Infrastructures 

In the past few years, several infrastructures to 
integrate context information with GIS-like tools have 
been presented. 

Some streams of works is simply based on 
representing Web information overlaid to geographical 
maps [But06, Rou05]. Examples include representations 
of avian–flu-outbreak reports 

[declanbutler.info/Flumaps1/avianflu.html], celebrity 
sightings [www.gawker.com/stalker] and real estate 
information [www.forsalebyownercenter.com/google-
earth-real-estate.aspx]. More dynamic applications, 
combine collaborative technologies (e.g., blogs and 
wiki) to GIS tools. MapWiki [TerK06], for example, is a 
Wiki collaborative environment where all the contents 
are located on a map. The contents can be edited and 
moved across the map and accessed on a location basis. 
All the above projects represents promising starting 
points of a future in which a wide range of information 
will be properly conveyed by novel GIS services. 
However, most of the above researches are special 
purpose and lack of a general architecture to manage and 
integrate pervasive, Web and GIS data. Furthermore, in 
opposition at our user-centric vision, their aim is to 
produce a centralized view of the world. 

Other works concerned systems characterized by the 
presence of exploratory users and a surrounding 
environment. Users move across the environment and 
access information exploiting different type of 
embedded sensors. Example of this systems are 
TinyLime [CuGG05] and the system proposed in 
[MamQZ06]. 

TinyLime is a middleware for wireless sensor 
networks that departs from the traditional setting where 
sensor data is collected by a central monitoring station, 
and enables instead multiple mobile monitoring stations 
to access the sensors in their proximity and share the 
collected data through wireless links. Similarly, the 
work in [MamQZ06] describes the implementation of a 
tuple-based distributed memory realized with the use of 
RFID technology. By accessing in a wireless way the re-
writable memory of such RFID tags according to a 
tuple-based access model, it is possible to enforce 
mobile and pervasive coordination and improve our 
interactions with the physical world. From a certain 
point of view we can consider these systems as “World 
Browsing” systems. Nevertheless we can say that our 
new system is certainly more complete and structured. 
These systems indeed base their functionality on 
specific technologies (either sensors or RFID tags), 
they aren’t based on a well-structured context model and 
further they don’t exploit information coming from the 
Web (as our does). 

A further interesting project is FLAME2008 
[WeissVoG04]. Users through their PDA access to 
services (related to the 2008 Olympics games in 
Beijing) expressly fitted on their needs: FLAME2008 
elaborates them on the base of activities and situations 
carried out by the user. The infrastructure is very 
interesting, in particular for its use of ontologies, and 
appears to be very complete. Nevertheless we noticed 
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that it’s too bound to a specific application domain and it 
doesn’t perform any mechanism for generate and store 
new. Our model is certainly more user centric and it has 
been developed to adapt itself to a generic context, and 
to be fully functional  even without the support of a 
centralized infrastructure.  

7. Conclusions and Future Works 
In this paper we presented a simple model and 

infrastructure to (i) access context information coming 
from embedded devices and Web resources in a 
comprehensive framework, and (ii) to effectively 
visualize it –possibly  with mobile devices --  with novel 
GIS tools. Our future research in this area will mainly 
focus on two aspects. On the one hand, we will try to 
integrate ontologies in our model to improve its 
expressiveness and flexibility. In particular, ontologies 
will allow more semantic forms of pattern matching 
among W4 tuples. On the other hand, we will try to go 
further than the current flat (i.e., tuple space) data 
organization and link knowledge atoms in suitable 
knowledge networks allowing a better and more 
semantic navigation of context information. 
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