
 1

Hormone-Inspired Adaptive Communication
and Distributed Control for CONRO

Self-Reconfigurable Robots
Wei-Min Shen*1, Behnam Salemi, and Peter Will*, * Member, IEEE

Abstract—This paper presents a biologically inspired approach

to two basic problems in modular self-reconfigurable robots:
adaptive communication in self-reconfigurable and dynamic
networks, and collaboration between the physically coupled
modules to accomplish global effects such as locomotion and
reconfiguration. Inspired by the biological concept of hormone,
the paper develops the Adaptive Communication (AC) protocol
that enables modules continuously to discover changes in their
local topology, and the Adaptive Distributed Control (ADC)
protocol that allows modules to use hormone-like messages in
collaborating their actions to accomplish locomotion and self-
reconfiguration. These protocols are implemented and evaluated,
and experiments in the CONRO self-reconfigurable robot and in
a Newtonian simulation environment have shown that the
protocols are robust and scaleable when configurations change
dynamically and unexpectedly, and they can support online
reconfiguration, module-level behavior shifting, and locomotion.
The paper also discusses the implication of the hormone-inspired
approach for distributed multiple robots and self-reconfigurable
systems in general.

Index Terms — Self-reconfigurable robots, self-reconfigurable

systems, adaptive communication, dynamic networks, distributed
control, and multi-agent systems.

I. INTRODUCTION

S elf-reconfigurable robots, in one class, are made of
autonomous modules that can connect to each other to

form different configurations. The connections between
modules can be changed autonomously by actions of the
modules themselves. Furthermore, since each module is
autonomous (has its own controller, communicator, power
source, sensors, actuators, and connectors), modules in a self-
reconfigurable robot must collaborate and synchronize their
actions in order to accomplish desired global effects. Because
of this dynamism, solutions must be provided so that
communication and control among modules can be adaptive to
topological changes in the network.

As an example of a chain-typed self-reconfigurable robot,
Fig. 1 shows the CONRO robot system made of small-sized
modules that can autonomously and physically connect to

each other to form different configurations such as chains,
trees, (e.g., legged-bodies), or loops. The top left picture
shows a single autonomous CONRO module; the top right
picture shows a CONRO chain (snake) configuration with
eight modules, the bottom left has two CONRO insects (tree
configuration) each of which has six modules for legs and
three modules for the spine, and the bottom right is a CONRO
loop configuration with eight modules. Each configuration can
perform its locomotion, and the robot can autonomously
change configurations in limited situations. For movies and

more information about CONRO robots, including automatic
docking, please visit http://www.isi.edu/conro.

Fig. 1. CONRO module and snake, insects, and rolling track configurations.

1 The corresponding author Dr. Wei-Min Shen’s contact information is:

Information Sciences Institute, University of Southern California, 4676
Admiralty Way, Marina del Rey, CA 90292. Phone: 310-448-8710, fax: 310-
822-0751, email: shen@isi.edu.

This paper addresses two basic problems for modular self-
reconfigurable robots: how modules in these robots
communicate with each other when connections between them
may be changed dynamically and unexpectedly (thus changing
their communication routing), and how these physically
coupled modules collaborate their local actions to accomplish
global effects such as locomotion and reconfiguration. The
solutions to these problems may also be applicable to self-
reconfigurable systems in general. Examples of such systems
include distributed sensor networks [1] and swarm robotic
systems [2].

Specifically, modules in a self-reconfigurable robot must
coordinate their actions to achieve given missions. Such
coordination must be dynamic, to deal with the changes in

http://www.isi.edu/conro

 2

network topology; asynchronous, to compensate the lack of
global clocks; scalable, to support shape-changing and enable
global efforts based on weak local actuators; and reliable, to
recover from local damages in the system and provide fault-
tolerance.

In the context of communication, a self-reconfigurable
robot can be viewed as a network of nodes that can change
and reconfigure their connections dynamically and
autonomously. Messages in normal practice are passed
between connections using named addresses (such as in the
Internet) and are routed from the source to the destination.
Various addressing and routing strategies are possible: Single
messages can go from one module to the next one; Broadcast
messages go to all nodes directly; Multicast messages go to
several specific nodes. Routing may be best-effort as in the
Internet, or source-routed as in some supercomputers [3].
Dynamically changing the topology requires continually
determining the address and computing the route. This needs
continual rediscovery of connection topology at the module
level. Each module should discover and monitor unexpected
local topology changes in the network, and adapt to such
changes by reorganizing its relationships with other modules
using their connectors. The concept of connector is widely
applicable to many different types of networks. For example,
in a supercomputing network the connectors are the channels
that connect nodes to their neighbors [3]. In a wireless
network, the connectors of a node are the channels available
for communication. In self-reconfigurable robots, the
connectors are physical so that a link is a physical coupling
and a network of nodes can form physical structures with
different shapes and sizes. For example, the physical
connectors in CONRO must be joined and disjoined
physically to change shape. Such changes in the network
topology make a CONRO robot a dynamic network.

The control of the motion or locomotion of reconfigurable
robotics, due to the frequent changes in topology, presents
another special challenge since the action messages may need
to be directed to the modules doing a specific function rather
than to a specific module. Ideally, the modules should
coordinate their actions by their locations in the current
configuration, not by their names or identifiers. For example,
the message should be sent to the “knee” module in the
present configuration not to module #37 that perhaps was the
knee on the old configuration. With this ability, a module
should be able to automatically switch its behavior if its
role/location is changed in the configuration. Furthermore, a
control message may also require concerted actions. In other
words, the message intent may be to execute an action for the
robot to “go forward” rather than require the sending of
several messages to swing the hip, bend the knee, bend the
ankle and flex the toes and do this in spite of different
modules being swapped into and out of the configuration as
the system evolves.

This paper presents a biologically inspired approach to
address the above challenges and mimic the concept of
hormones used among biological cells for both

communication and control. A biological organism can have
many hormones acting simultaneously and without interfering
with each other, each hormone affecting only specific targeted
sites. The main idea is that a single “hormone” signal can
propagate through the entire network of modules, yet cause
different modules to react differently based on their local
“receptors,” sensors, topology connections, and state
information. Computationally speaking, a hormone signal is
similar to a content-based message but has the following
unique properties: (1) it has no specific destination; (2) it
propagates through the network; (3) it may have a lifetime;
and (4) it may trigger different actions for different receivers.
Notice that hormone propagation is different from message
broadcasting. A single hormone may cause multiple effects on
the network and different nodes may behave differently when
receiving the same hormone. Furthermore, there is no
guarantee that every node in the network will receive the same
copy of the original signal because a hormone signal may be
modified during its propagation.

To apply this idea to adaptive communication, we view
each module in a dynamic network as an active cell that can
continuously discover its local topological changes and adjust
its communication strategy accordingly. We design the
Adaptive Communication (AC) protocol for all modules to
discover and monitor their local topology and ensure the
correct propagation of hormone messages in the network. This
property holds regardless of the changes in the network
topology.

To support distributed control with dynamic network
topology, we view locomotion as the effect achieved by the
interaction on the environment of executing a certain set of
actions intrinsically in the robot. For instance, an automobile
moves forward when the running engine is engaged with the
wheels, provided among other things that there is enough
friction between the tires and the road. In our robot we
execute a certain set of intrinsic motions and the interaction of
these motions with the environment causes locomotion.
Motion execution is thus execution of module actions in the
robot connection topology plus its interaction with the
environment. The hormone concept described above in the
context of topology discovery applies equally well to motion
execution. We have designed the Adaptive Distributed
Control (ADC) protocol for this purpose and applied it to the
control of CONRO-like self-reconfigurable robots.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents a general
method for topology discovery and the AC protocol. Section
IV extends the AC protocol to the ADC protocol for both
distributed control and adaptive communication among self-
reconfigurable modules. Section V presents the experimental
results of applying the hormone-inspired control protocols to
the CONRO robot. Finally, Section VI discusses some
fundamental questions about the hormone inspired approaches
and suggests future research directions.

 3

II. RELATED WORK
The communication and control of self-reconfigurable

robots is a challenging problem and the approaches for the
problem can be either centralized or distributed. From the
viewpoint of flexibility and reliability, the distributed
approaches are generally preferred for the self-reconfigurable
robots. Two recent general articles [4, 5] have provided a
good survey of the field.

Related work for centralized control includes Yim et al. [4,
6] in which configuration-dependent gait control tables are
used to specify actions for each module for each step.
Chirikjian et al. [7, 8] study the metric properties of
reconfigurable robots and Chirikjian and Burdick [9] propose
a mathematical model for controlling hyper-redundant robot
locomotion. Kotay and Rus [10] propose a control algorithm
for controlling molecular robots. Castano et al. [11, 12] use a
centralized approach for controlling locomotion and
discovering network topology. Rus and Vona [13] use the
Melt-Grow planner for the Crystalline robot. Unsal et al. [14]
utilize a centralized planner for bipartite self-reconfigurable
modules. Most recently, Yoshida et al. [15] and Kamimura et
al. [16] demonstrate the online reconfiguration
(reconfiguration while locomotion) using a centralized
method.

Related work for distributed control includes Fukuda and
Kawauchi’s control method for CEBOT [17], the series of
control algorithms proposed by Murata et al. [18-22] for self-
assembly and self-repairing robots, the hormone-based
distributed control method proposed by Shen et al. [23-26],
and the role-based control method by Stoy et al. [27, 28].
Most recently, several distributed methods have been
proposed for lattice-based robots, including a “secent”-based
approach by Bojinov et al. [29], a goal-ordering based
approach by Yim et al. [30], a parallel planner by Vassilvitskii
et al. [31], and an automata-based approach by Butler et al.
[32].

The distributed control method proposed in this paper is
different from the previously proposed distributed control
methods in several aspects. First, a module selects actions
based on multiple sources of local information, including the
local topology, the sensory inputs, the local state variables,
and most importantly the received hormone messages.
Second, the local topology defined in this paper distinguishes
the connectors of a neighboring module and treat different
connectors differently. In other words, a module knows not
only that its connector cx has a neighbor, but also the name of
the connector to which cx is connected. This provides more
power for topology representation. Third, the method
proposed here can deal with both locomotion and
reconfiguration using the same unified framework. This has
been demonstrated through the ability of distributed online
reconfiguration on a chain-based real robot. To the best of our
knowledge, such a demonstration has not been done before.
Fourth, the method described here has wider application scope
than the Cartesian lattice, and can support modules that have

internal deforming actions such as pitch, yaw, and roll.
The concept of hormone has previously inspired several

researchers to build equivalent computational systems.
Autonomous Decentralized Systems (ADS) [33, 34] is
perhaps the earliest attempt to use hormone-inspired
methodology to build systems that are robust, flexible, and
capable of doing on-line repair. In ADS, the Content Code
Communication Protocol was developed for autonomous
systems to communicate not by “addresses” but by the content
of messages. The ADS technology has been applied in a
number of industrial problems [35], and has the properties of
on-line expansion, on-line maintenance, and fault-tolerance.
However, ADS systems have yet been applied to self-
reconfiguration. Another similar approach is proposed in [36]
where markers are passed in a network to dynamically form
sets of nodes for performing parallel operations. Finally,
biologically inspired control methods have also been used for
robot navigation [37].

III. ADAPTIVE COMMUNICATION
As described above, the modules in a self-reconfigurable

robot are reconfigured structurally. The physical interpretation
of this action is that shape morphing occurs. The connectivity
interpretation is that the modules have a new communication
network topology. The control implication is that global
actions such as locomotion require a re-computation of the
local actions to be executed by the individual modules. These
local actions depend on the position of the module in the
reconfigured structure. To the best of our knowledge, such
control approach can support some unique and new
capabilities, such as distributed and online bifurcation,
unification, and behavior-shifting, which have not been seen
before in robotics literature. For example, a moving snake
robot with many modules may be bifurcated into pieces, yet
each individual piece can continue to behave as an
independent snake. Multiple snakes can be concatenated (for
unification) while they are running and become a single but
longer snake. For behavior-shifting, a tail/spine module in a
snake can be disconnected and reconnected to the side of the
body, and its behavior will automatically change to a leg (the
reverse process is also true). In fault tolerance, if a multiple
legged robot loses some legs, the robot can still walk on the
remaining legs without changing the control program. All
these abilities would not be possible if modules could not cope
with the topological changes in the communication network.

In this section, we describe an adaptive communication
protocol for dynamic networks such as those used in self-
reconfigurable robots. Using this protocol, modules can
communicate even if the topology of the network is changing
dynamically and unexpectedly. Communication with this
protocol will be shown to be robust, flexible, and will allow
reconfiguration while the network is in operation. The
reconfiguration can either be self-initiated, superimposed by
external agents, or in response to sensor interaction with the
environment.

 4

A. Self-Reconfigurable Modules and Networks
To illustrate the concept of adaptive communication in a

self-reconfigurable network, we will use the CONRO robot as
an example. As shown in Fig. 1, a CONRO robot consists of a
set of modular modules that can connect/disconnect to each
other to form different robot configuration. The detail of a
single module is shown in Fig. 2. Each CONRO module is a
generalized-cylinder that is 4.0 inch long and 1.0 inch2 in
diameter. Every module is autonomous, self-sufficient, and
equipped with a micro-controller, two motors, two batteries,
four connectors for joining with other modules, and four pairs
of infrared emitter/sensor for communication and docking
guidance.

The movements of modules are actuated by two
servomotors, which provide the pitch (up and down) rotation
called DOF1 and the yaw (left and right) rotation called
DOF2. With these two degrees of freedom, a single module
can wiggle its body and has a limited ability to move.
However, when two or more modules connect to form a
structure, they can accomplish many different types of
locomotion. For example, a chain of modules can mimic a
snake or a caterpillar, a body with legs can perform insect or
centipede gaits, and a loop can move as a rolling track. Karl
Sims [38] has studied this question in details and developed a
system for discovering the motion possibilities of different
block structures. To some extent, CONRO provides a physical
implementation of his results.

The control program on a CONRO module is written in the
BASIC language and is running on the on-board STAMP II
micro-controller that has only 2K bytes of ROM for programs
and 32 bytes of RAM for variables. Such a tight
computational resource poses additional challenges for the
control program. We believe that the simplicity and efficiency
of hormone-inspired approach has contributed greatly to the
successful implementation of all functions and programs on
board.

CONRO modules can connect to each other by their
docking connectors located at either end of each module. At
one end, called the module’s back, is a female connector,
which has two holes for accepting another module’s docking
pins, a spring-loaded latch for locking the pins, and an Shape
Memory Alloy (SMA)-triggered mechanism for releasing the
pins. At the other end of a module, three male connec ors are

located on three sides of the module, called front, left, and
right. Each male connector consists of two pins. When a male
connector and a female connector are joined together, we call
the connection an active link. The connected modules are
called neighbors.

CONRO modules communicate with each other through
active links. Each connector has an infrared transmitter and an
infrared receiver, and they are arranged in such a way that
when two connectors are joined to form an active link, the
transmitter and the receiver of one side are aligned with the
receiver and the transmitter on the other side, forming a bi-
directional local communication link. In CONRO modules,
such communication mechanism is established by a handshake
between the sender and the receiver. When the sender wants
to send a message, it turns on its infrared transmitter and waits
for the receiver to respond. When the receiver detects the
signal, it will turn on its transmitter and inform the sender and
both parties will immediately enter the serial communication
protocol (RS232 with 9600 baud rate) and the message will be
sent and received. If there is no receiver at the other end, then
the sender will not get any response and the procedure will
return a timeout failure.

Pitch Action (DOF1)

Yaw Action (DOF2)

Conne ction from
other module

Connection from
other module

Connection from
other module Connection from

other module

Fig. 2. The schema for a CONRO self-reconfigurable module, and
four possible connections to neighbor modules.

Fig. 3 shows a network of 9 modules (9x4 connectors)
forming a hexapod. There are 8 active links (which use 16
connectors) and the rest of 20 connectors are still open. Each
active link uses two pairs of aligned infrared transmitters and
receivers for communication. As we can see from this
example, a CONRO robot can be viewed as a communication
network of connected modules as well as a physically
connected set of modules.

Based on the above description, we define a self-
reconfigurable communication network as a connected,
undirected graph that has the following properties:

IR Receiver: IR Transmitter: Yaw motor:

(Pitch motors not shown)

Fig. 3. A top view of a self-reconfigurable communication network
among nine CONRO modules

1. Each node is a self-reconfigurable module;
2. Each node has finite, named connectors. Two connectors

of two modules can join and form an active link but one
connector can only be in at most one active link.

3. Each edge is an active link;
t

 5

4. The topology of the network may change dynamically,
and active links may appear or disappear dynamically;

5. Nodes can only communicate through active links;
6. Nodes do not know the network size nor have unique IDs.

B. The Representation of Local Topology
We represent the local topology of a CONRO module in a

self-reconfigurable network based on how its connectors are
connected to the connectors of its neighbor modules. Shown

in Fig. 4, a module is type T0 if it does not connect to any
other modules. A module is type T1 if its back connector, b, is
connected to the front, f, of another module. A module is type
T2 if its front connector is connected to the back of another
module. A module is type T16 if its back is connected to the
front of a neighbor and its front is connected to the back of
another neighbor. A module is type T21 if its back is
connected to the front of another module, and its left, l, and
right, r, are connected to the backs of other two modules
respectively. Note that every active link is a pair of the
connector b (the only female connector in a CONRO module)
and one of the three male connectors, f, l, and r. There are 32
types of local topology as listed in Table 1 and these types are
ordered by the number of active links they have. For example,
type T0 has no active links; types T1 through T6 have one
active link, types T7 through T18 have two active links, types
T19 through T28 have three active links, and types T29
through T31 have four active links.

TABLE 1: THE LOCAL TOPOLOGY TYPES OF CONRO MODULES

This Module This Module
b f r l Type b f r l Type
 T0 f b T16
f T1 f b T17
 b T2 f b T18
 b T3 b b b T19
 b T4 f b b T20
l T5 f b b T21
r T6 f b b T22
 b b T7 l b b T23
 b b T8 l b b T24
 b b T9 l b b T25
l b T10 r b b T26
l b T11 r b b T27
l b T12 r b b T28
r b T13 f b b b T29
r b T14 l b b b T30

C
on

ne
ct

ed
 to

 o
th

er
 m

od
ul

es

r b T15

r b b b T31

C. The Adaptive Communication Protocol
Using the concept of hormone messages and local

topological types defined above, we can define the Adaptive
Communication (AC) protocol for continual rediscovery of
network topology and ensure adaptive communication. Fig. 5
shows the pseudo-code program for the AC protocol. The
main procedure is a loop of receiving and sending
(propagating) “probe” hormones between neighbors, and
selecting and executing local actions based on these messages.
A probe is a special type of hormone that is used for
continuously discovering and monitoring local topology.
Other types of hormones that can trigger more actions will be
introduced later. All modules in the network run the same
program, and every module detects changes in its local
topology (i.e., the changes in the active links) by sending
probe messages to its connectors to discover if the connectors
are active or not. The results of this discovery are maintained
in the vector variable LINK[C], where C is the number of
connectors for each module (e.g., C=4 for a CONRO module).
If there is no active link on a connector c (or an existing active

T0 l

r
f b

T16T1 T2 T16

T5 T5 T5

T6 T6 T6

T21 T29 T19

Fig. 4. Some example topological types (T0, T1, T2, T5, T6,
T16, T21, T29) of CONRO modules (f, l, r, b are connectors).

OUT: the queue of messages to be sent out;
IN: the queue of messages received in the background;
C: the number of connectors for each module;
MaxClock: the max value for the local timer;
LINK[1,…,C]: the status variables for the connectors (i.e., the
local topology), and their initially values are nil;
A hormone is a message of [type, data, sc, rc], where sc is the
sending connector through which the message is sent, and rc is
the receiving connector through which the message is received.

Main()
LocalTimer = 0;
Loop forever:
 For each connector c=1 to C, insert [probe,_,c,_] in OUT;
 For each received hormone [type, data, sc, rc] in IN, do:
 { LINK[rc] = sc;

 If (type ≠ probe) then
 SelectAndExecuteLocalActions(type, data);

 PropagateHormone(type, data, sc, rc);
 }
 Send();
 LocalTimer = mod(LocalTimer+1, MaxClock);
End Loop.

SelectAndExecuteLocalActions(type, data)
{ // For now, assume that when LocalTimer=0, a module will
 // generate a test hormone to propagate to the network
 // Other possible local actions will be introduced later.
 If LocalTimer==0, then for c=1 to C, do:
 Insert [Test, 0, c, nil] into OUT;
}

PropagateHormone(type, data, sc, rc)
{ For each connector c=1 to C, do:
 If LINK[c]≠0 and c≠rc, then
 { Delete [probe, *, c, *] from OUT;
 Insert [type, data, c, nil] into OUT; // propagation
 }
}

Send()
{ For each connector c=1 to C, do:
 get the first message [type,*,c,*] from OUT,
 Send the message through the connector c;
 If send fails (i.e., time out), LINK[c] = 0.
}

Fig. 5. The Adaptive Communication (AC) Protocol

 6

link on c is disconnected), then sending of a probe to c will
fail and LINK[c] will be set to nil. If a new active link is just
created through a connector c, then sending a probe to c will
be successful and LINK[c] will be updated. After one
exchange of probes between two neighbors, both sides will
know which connector is involved in the new active link and
their LINK variables will be set correctly2.

The AC protocol has a number of important properties that
are essential for adaptive communication in self-
reconfigurable networks.

Proposition 1: Using the AC protocol, all modules can
adapt to the dynamic topological changes in the self-
reconfigurable network and discover their local topology in a
time less than two cycles of the main loop. The updated local
topology information is stored in LINK[c].

To see this proposition is true, notice that initially all LINK
variables have a nil value. If a module has a neighbor on its
connector c, then LINK[c] will be set properly when this
module receives a probe on that connector. Since every
module probes all its connectors in every cycle of the
program, the LINK[c] will be updated correctly with at most
two cycles.

Proposition 2: If the network is acyclic graph, then the AC
protocol guarantees that every non-probe message will be
propagated to every module in the network once and only
once. The time for propagating a hormone to the entire
network is linear to the radius of the network graph.

To see that proposition 2 is true, notice that when a new
message is generated (e.g., [Test,*,*,*] in Fig. 5), it will be
sent to all active links from that module. When a module
receives a hormone, it will send it to all active links except the
link from which the hormone is received. Since the network is
acyclic, the generator module can be viewed as the root of a
propagation tree, where each module will receive the hormone
from its parent, and will send the hormone to all its children.
The propagation will terminate at the leaf nodes (modules)
where there is no active links to propagate. Since the tree
includes every module, the hormone reaches every node.
Since every module in the tree has only one parent, the
hormone will be received only once by any module.

For networks that contain loops (cyclic graphs), the AC
protocol must be extended to prevent a hormone from
propagating to the same module again and again. To ensure
that each hormone is received once and only once by every
module, additional local information (such as local variables)
must be used to “break” the loop of communication. We will
illustrate the idea in the ADC protocol when we describe the
control of rolling tracks, which is a cyclic network.

2 For example, if an active link is created between the connector x of

module A and the connector y of module B, then LINK[x]=y for module A,
and LINK[y]=x for module B. The LINK[C] variable represents the local
topology type of a CONRO module. For example, a module is type T0 if
LINK[f,l,r,b] = [nil,nil,nil,nil]; type T2 if LINK[f,l,r,b] = [b,nil,n nil]; and
type T21 if LINK[f,l,r,b] = [nil,b,b,f].

IV. HORMONE-INSPIRED DISTRIBUTED CONTROL
As described above we want a distributed control protocol

that is identity free but supports a module to select its actions
based on its location in the network. Since hormones can
trigger different actions at different site and every module
continuously discoveries its local topology, such a control
method can be defined based on the hormone messages.

To illustrate the idea, let us first consider an example of
how hormones are used to control the locomotion of a
metamorphic snake robot. Fig. 6 illustrates a 6-module
CONRO snake robot and its caterpillar gait. The types of
modules, from the left to the right, in this robot are: T1 (the
head), T16, T16, T16, T16, and T2 (the tail). To move
forward, each module’s pitch motor (DOF1) goes through a
series of positions and the synchronized global effect of these
local motions is a forward movement of the whole caterpillar
(indicated by the arrow). In general, the wavelength of the gait
can be flexible (e.g., a single module can craw as a
caterpillar). The example in Fig. 6 shows a wavelength of
four, but other wavelengths can be defined similarly.

To completely specify this gait, one can use a conventional
gait control table [6] shown in Table 2, where each row in the
table corresponds to the target DOF1 positions for all modules
in the configuration during a step. Each column corresponds
to the sequence of desired positions for one DOF1. The
control starts out at the first step in the table, and then
switches to the next step when all DOF1 have reached their
target position in the current step. When the last step in the
table is done, the control starts over again at step 0. As we can
see in Table 2, the six columns correspond to the six module’s
DOF1 in Fig. 6 (the leftmost is M1, and the rightmost is M6).
The first row in this table corresponds to Step 0 in Fig. 6.

Step0

+45

-45 -45

+45 +45

-45
f

f

f

f
f

f
b

b
b

b

b

b

Fig. 6. A caterpillar (or nessie) movement
 (b and r are connectors, and +45 and –45 are DOF1)

TABLE 2: THE CONTROL TABLE FOR THE CATERPILLAR MOVE
Step Module ID for DOF1 actions

 M1 M2 M3 M4 M5 M6
0 +45° -45° -45° +45° +45° -45°
1 -45° -45° +45° +45° -45° -45°
2 -45° +45° +45° -45° -45° +45°
3 +45° +45° -45° -45° +45° +45°

The problem of this conventional gait table method is that it

is not designed to deal with the dynamic nature of robot
configuration. Every time the configuration is changed, no
matter how slight the modification is, the control table must be
rewritten. For example, if two snakes join together to become
one, a new control table must be designed from scratch. A
simple concatenation of the existing tables may not be
appropriate because their steps may mismatch. Furthermore,
il,

 7

when robots are moving on rough ground, actions on each
DOF cannot be determined at the outset.

To represent a locomotion gait using the hormone idea, we
notice that Table 2 has a “shifting” pattern among the actions
performed by the modules. The action performed by a module
m at step t is the action to be performed by the module (m-1)
at step (t+1). Thus, instead of maintaining the entire control
table, this gait is represented and distributed at each module as
a sequence of motor actions (+45°, -45°, -45°, +45°). If a
module is performing this caterpillar gait, it must select and
execute one of these actions in a way that is synchronized and
consistent with its neighbor module. To coordinate the actions
among modules, a hormone can be used to propagate through
the snake and allow each module to inform its immediate
neighbor what action it has selected so the neighbor can select
the appropriate action and continue the hormone propagation.
This example also illustrates that hormones are different from
broadcasting messages because their contents are changing
during the propagation.

A. The Adaptive and Distributed Control Protocol
To implement the hormone-inspired distributed control on

the AC protocol, each module must react to the received
hormones with appropriate local actions. These actions
include the commands to local sensors and actuators, updates
of local state variables, as well as modification of existing
hormones or generation of new hormones. Modules determine
their actions based on the received hormone messages, their
local knowledge and information, such as neighborhood
topology (module types) or the states of local sensors and
actuators.

For these purpose, we specify the Adaptive and Distributed
Control (ADC) protocol listed in Fig. 7. The ADC protocol is
the same as the AC protocol except that there is a
RULEBASE and the procedure
SelectAndExecuteLocalActions() is extended to select and
execute actions based on the rules in the RULEBASE. The
selection process is based on (1) local topology information
(such as LINK[] and the module type), (2) the local state
information (such as local timer, motor and sensor states), and
(3) the received hormone messages. Biologically speaking, the
rules in RULEBASE are analogous to the receptors in

biological cells, which determine when and how to react
incoming hormones. A module can generate new hormones
when triggered by the external stimuli (e.g., the environmental
features such as color or sound) or by a received hormone
message. When there are multiple active hormones in the
system, the modules will negotiate and settle on one hormone
activity.

To illustrate the idea of action selection based on rules, let
us consider how the caterpillar movement is implemented.
The required rules for this global behavior are listed in Table
3. In this table, the type of the hormone message is called CP,
and the data field contains the code for DOF1. The other
fields of hormones are as usual, but we only show the field of
sender connector (sc) for simplicity.

TABLE 3: THE RULEBASE FOR THE CATERPILLAR MOVE

Module
Type

Local
Timer

Received
Hormone Data

Perform
Action

Send Hormone

T1 0 DOF1=+45 [CP, A, b]
T1 (1/4)*MaxClock DOF1=-45 [CP, B, b]
T1 (1/2)*MaxClock DOF1=-45 [CP, C, b]
T1 (3/4)*MaxClock DOF1=+45 [CP, D, b]

T16,T2 A DOF1=-45 [CP, B, b]
T16,T2 B DOF1=-45 [CP, C, b]
T16,T2 C DOF1=+45 [CP, D, b]
T16,T2 D DOF1=+45 [CP, A, b]

All modules in the robot have the same set of rules, but they

react to hormones differently because each module has
different local topology and state information. For example,
the first four rules will trigger the head module (type T1) to
generate and send (through the back connector b) four new
hormones in every cycle of MaxClock, but will have no
effects on other modules. The last four rules will not affect the
head module, but will cause all the body modules (T16) to
propagate hormones and select actions. These modules will
receive hormones through the front connector f and propagate
hormones through the back connector b. When a hormone
reaches the tail module (T2), the propagation will stop
because the tail module’s back connector is not active. The
speed of the caterpillar movement is determined by the value
of MaxClock. The smaller the value is, the more frequent new
hormones will be generated, thus faster the caterpillar moves.

Compared to the gait control table, the ADC protocol has a
number of advantages. First, it supports online reconfiguration
and is robust to a class of shape alterations. For example,
when a snake is cut into two segments, the two disconnected
modules will quickly change their types from T16 to T2, and
from T16 to T1, respectively (due to the AC protocol). The
new T1 module will serve as the head of the second segment,
and the new T2 module will become the tail of the first
segment. Both segments will continue move as caterpillar.
Similarly, when two or more snakes are concatenated
together, all the modules that are connected will become T16,
and the new snake will have one head and one tail, and the
caterpillar move will continue with the long snake. Other
advantages of this hormone-inspired distributed control
protocol include the scalability (the control will function
regardless of how many modules are in the snake
configuration) and the efficiency (the coordination between

// Built on the AC protocol by adding a RULEBASE and
// extending the following procedure.

SelectAndExecuteLocalActions(type, data)
{ // Select appropriate actions based on
 // type, data, LINK, LocalTimer, and RULEBASE;
 Actions SelectActions(type,data,LINK,LocalTimer,RULEBASE);
 For each action a in Actions, do ExecuteAction(a);
}

RULEBASE:
{ // The rules here are similar to the receptors in biological cells.
 // They are task-specific “if-then” rules as those in Table 3;
 // Although each desired task has a different set of rules,
 // the rules can be combined together if they are not conflicting.
}

Fig. 7. The Adaptive and Distributed Control (ADC) Protocol

 8

modules requires only one hormone to propagate from the
head to the tail). Let n be the number of modules in the snake,
then the ADC protocol requires only O(n) message hops for
each caterpillar step, while a centralized approach would
require O(n2) message hops because n messages must be sent
to n modules.

In general, the ADC protocol has the following properties:
• Distributed and Fault-Tolerant. There are no permanent

“brain” modules in the system and any module can
dynamically become a leader when the local topology is
appropriate. Damage to single modules will not paralyze
the entire system.

• Collaborative Behaviors. Modules do not require unique
IDs yet can determine their behaviors based on their
topology types and other local information. The global
behaviors can be locomotion or self-reconfiguration.

• Asynchronous Coordination. No centralized global real
time clocks are needed for module coordination, and
actions can be synchronized via hormone propagation.

• Scalability. The control mechanism is robust to changes
in configuration as modules can be added, deleted, or
rearranged in the network.

B. Other Locomotion Examples of the ADC Protocol
The ADC protocol can be applied to many different robot

configurations. All that is required is to provide the
appropriate set of rules to the protocol and have the correct
initial configuration in place. For example, Table 4 lists the set
of rules that will enable a legged robot to walk. In this class of
configuration, the module types are similar to those shown in
Fig. 3 and Fig. 4, where a six-legged robot is shown. In other
words, the left leg modules are T6, the right leg modules are
T5, the head is T21, the tail T19, and the spine modules are
T29. The hormone message used in Table 4 is named as LG.
We use set notation such as {l,b,r} as a shorthand for the set
of connectors to send the hormone. The action Straight means
DOF1=DOF2=0. The action Swing means to lift a leg module,
swing the module forward, and then put the module down on
the ground. The action Holding means to hold a leg module on
the ground while rotating the hip to compensate the swing
actions of other legs.

TABLE 4: THE RULEBASE FOR A LEGGED WALK

Module
Type

Local
Timer

Received
Hormone Data

Perform
Action

Send
Hormone

T21, T17, T18 0 Straight [LG, A, {l,r,b}]
T21, T17, T18 0.5*MaxClock Straight [LG, B, {l,r,b}]

T29, T19, T26, T28 A Straight [LG, B, {l,r,b}]
T29, T19, T26, T28 B Straight [LG, A, {l,r,b}]

T5 A Swing
T6 B Holding

The first two rules indicate that the head module, which can

be type T21, T17, or T18, is to generate two new LG
hormones with alternative data (A and B) for every cycle of
MaxClock. This hormone propagates through the body
modules (T29, T26, or T28) and the tail module (T19),
alternates its data field, and reaches the leg modules, which
will determine their actions based on their types (T5 or T6).

This control mechanism is robust to changes in

configurations. For example, one can dynamically add or
delete legs from this robot, and the control will be intact. The
speed of this gait can be controlled by the value of MaxClock,
which determines the frequency of hormone generation from
the head module.

As another example of how to use the ADC protocol to
control locomotion of self-reconfigurable robots, Figure 8
shows the configuration of the rolling track. Notice that in this
configuration, all modules are of type T16, only their DOF1
values are different. The track moves one direction by shifting
the two DOF1 values (90, 90) to the opposite direction.

TABLE 5: THE RULEBASE FOR A ROLLING TRACK

90 0

90

0

90 0

90

0

f b f b

b f b f

f

f
f
b

b

b

b f

Moving
direction

Hormone propagation

Fig. 8. A rolling track configuration.

Module
Type

Local
Variables

Received
CP Data

Perform
Action

Send
Hormone

T16 Head=1,
Timer=MaxClock

DOF1=90, Timer=0, Head=0

[RL,(90,90,1),b]

T16 DOF1=0 (90,90,1) DOF1=90, Timer=0, Head=1 [RL,(90,0,0),b]*
T16 DOF1=0 (90,90,0) DOF1=90, Timer=0, Head=0 [RL,(90,0,0),b]
T16 DOF1=0 (90,0,0) DOF1=0, Timer=0, Head=0 [RL,(0,0,0),b]
T16 DOF1=0 (0,0,0) DOF1=0, Timer=0, Head=0 [RL,(0,0,0),b]
T16 DOF1=90 (0,0,0) DOF1=0, Timer=0, Head=0 [RL,(0,90,0),b]
T16 Head=0, DOF1=90 (0,90,0) DOF1=90, Timer=0, Head=0 [RL,(90,90,0),b]
T16 Head=1, DOF1=90 (0,90,0) DOF1=90, Timer=0, Head=0 [RL,(90,90,1),b]

Note: * means send the hormone after all local actions are completed.

Table 5 lists the rules for a rolling track robot. The hormone

used here is of type RL, and its data field contains two values
of DOF1, and a binary value for selecting the head module.
One hormone message continuously propagates in the loop
(just as a token traveling in a token ring) and triggers the
modules to bend (DOF1=90) or straighten (DOF1=0) in
sequence. We assume that there is one and only one module
whose local variable Head=1. This module is responsible for
generating a new hormone when there is no hormone in the
loop. This is implemented by the first rule, which will detect a
time-out for not receiving any hormone for a long time (i.e.,
looping through the program for MaxClock times). The head
module is not fixed but moving in the loop. We assume that
the initial bending pattern of the loop is correct (i.e., as shown
in Fig. 8) and the head module is initially located at the up-
right corner of the loop. The rules in Table 5 will shift the
bending pattern and the head position in the loop and cause
the loop to roll into the opposite direction of hormone
propagation. Since hormone propagation is much faster than
the actual execution of actions, when a module is becoming
the head, it is also responsible for making sure all actions in
the loop are completed before the next round starts. The head
module will hold the next hormone propagation until all its
local actions (DOF1 moving from 0 to 90) are completed.

Notice that the loop configuration is a cyclic network and
module types alone are no longer sufficient to determine local
actions (in fact all modules in the loop have the same type
T16). In general, additional local variables (such as Head) are
necessary to ensure the global collaborations between

 9

modules in a cyclic network.
Due to the potential of communication errors, there may be

situations where no module has the local variable Head=1 and
there is a need for a new head module. In such a case, it may
be possible to create a negotiation mechanism for one module
to switch its local variable to Head=1, if there are none in the
group -- just like some schools of fish where a female changes
gender if the male in the group is dead. One possible
implementation is to allow any module to self-promote to
become a new head if it has not received messages for a long
time. In this case, modules must negotiate among to ensure
that there is one and only one head in the system. This is
sometimes called the problem of Distributed Task Selection
and we will describe a solution later in Section VI.

C. Distributed Control of Cascade of Actions
Hormone-inspired distributed control can also be applied to

the control of cascade of actions, where actions are organized
in a hierarchical structure and a single action in a higher-level
can trigger a sequence of lower-level actions. To illustrate the
ideas, let us consider the example in Fig. 9, where a CONRO
robot is reconfiguring from a quadruped to a snake. The robot
first connects its tail with one of the feet, and then disconnects
the connected leg from the body so that the leg is
“assimilated” into the tail. After this “leg-tail assimilation”
action is performed four times, the result is a snake
configuration. Note that the middle shape in Fig. 9 is an
illustration. In the real CONRO robot, at least 4 modules are
needed to make a loop.

To control this reconfiguration, the high-level actions are a
sequence of leg-tail assimilations, while the lower-level
actions are those that enable the tail to find a foot, to align and
dock with the foot, and then disconnect the leg from the body.
Using hormones, the control of the reconfiguration can be
accomplished as follows. One module in the robot first
generates a hormone (called LTS for changing Legs To
Snake). This LTS hormone is propagated to all modules, but
only the foot modules (which are types T5 or T6) will react.
Each foot module will start generating a new hormone RCT to
Request to Connect to the Tail. Since there are four legs at this
point, four RCT hormones are propagating in the system.
Each RCT carries the information about its propagation path3.
A RCT hormone will trigger the tail module (type T2) to do

two things: inhibit its receptor for accepting any other RCT
hormones, and acknowledge the sender (using the path
information in the received RCT) with a TAR (Tail Accept
Request) hormone. Upon receiving the TAR hormone, the
selected foot module first terminates its generation of RCT,
and then generates a new hormone ALT (Assimilate Leg into
Tail) to inform all the modules in the path to perform the
lower-actions of bending, aligning, and docking the tail to the
foot. The details of these lower-level actions are described
elsewhere [26]. When these actions are terminated, the new
tail module will activate its receptor for accepting other RCT
hormones, and another leg assimilation process will be
performed. This procedure will be repeated until all legs are
assimilated, regardless of how many legs are to be assimilated.
In Table 6, we list one possible sequence of hormone
activities for assimilating four legs shown in Fig. 9.

3 A propagation path is a concatenation of all the sender connectors and

receiver connectors through which the hormone has been sent so a module
along the path can trace back to the original sender.

TABLE 6: THE HORMONE ACTIVITIES FOR CASCADE ACTIONS

Hormones Actions
LTS Start the reconfiguration
RCT1, RCT2, RCT3, RCT4 Legs are activated to generate RCTs
TAR, RCT2, RCT3, RCT4 The tail accepts a RCT, and leg1 stops RCT1
ALT, RCT2, RCT3, RCT4 The tail and leg1 perform the assimilation process
TAR, RCT2, RCT4 The new tail accepts a RCT, and leg3 stops RCT3
ALT, RCT2, RCT4 The tail and leg3 perform the assimilation process
TAR, RCT2 The new tail accepts a RCT, and leg4 stops RCT4
ALT, RCT2 The tail and leg4 perform the assimilation process
TAR The new tail accepts a RCT, and leg2 stops RCT2
ALT The tail and leg2 perform the assimilation process
∅ No more RCT, and end the reconfiguration

V. EXPERIMENTAL RESULTS
The hormone-inspired adaptive communication and

distributed control algorithms described above have been
implemented and tested in two sets of experiments. The first is
to apply the algorithm to the real CONRO modules for
locomotion and reconfiguration. The second is to apply the
algorithm to a CONRO-like robot in a Newtonian mechanics
simulation environment called Working Model 3D [39].

Fig. 9. Reconfiguring a 4-leg robot into a snake body.

All modules are loaded with the same program that
implements the ADC protocol illustrated in Fig. 5 and Fig. 7.
For different configurations, we have loaded the different
RULEBASE. All modules are running as autonomous systems
without any off-line computational resources. For economic
reasons, the power of the modules is supplied independently
through cables from an off-board power supplier.

For the snake configuration, we have loaded the rules in
Table 3 onto the modules and experimented with caterpillar
movement with different lengths ranging from 1 module to 10
modules. With no modification of programs, all these
configurations can move and snakes with more than 3
modules can move properly as caterpillar. The average speed
of the caterpillar movements is approximately 30cm/minute.
To test the ability of on-line reconfiguration, we have
dynamically “cut” a 10-module running snake into three
segments with lengths of 4, 4, and 2, respectively. All these
segments adapt to the new configuration and continue to move
as independent caterpillars. We also dynamically connected
two or three independent running caterpillars with various
lengths into a single and longer caterpillar. The new and
longer caterpillar would adapt to the new configuration and
ny

 10

continue to move in the caterpillar gait. These experiments
show that the ADC protocol is robust to changes in the length
of the snake configuration.

To test whether modules can automatically generate
hormones when they receive appropriate environmental
stimuli from their local external sensors, we have installed two
tilt-sensors on one of the modules in the snake configuration,
and loaded the following rules to the modules:

If tilt-sensors=[0,1], generate hormone [FlipLeft,*,*]
If tilt-sensors=[1,0], generate hormone [FlipRight,*,*]
If tilt-sensors=[1,1], generate hormone [FlipOver,*,*]

We defined the actions for FlipLeft, FlipRight, and FlipOver
for all the modules so that when these hormone messages are
received, the modules will perform the correct actions for
DOF1 and DOF2 to flip the snake back to its normal
orientation. To test this new behavior, we manually pushed
the snake, while it is moving as a caterpillar, to its side or
flipped it upside down. We observed that the tilt-sensors are
activated, new hormones are generated, a sequence of actions
is triggered, and the robot flips back to its correct orientation.
(See movies at http://www.isi.edu/conro.)

For the legged configuration, we have loaded the rules in
Table 4 onto the modules and experimented with the various
configurations derived from a 6-leg robot (see Fig. 3). These
configurations can walk on different number of legs without
changing the program and the rules. While a 6-leg robot is
walking, we dynamically removed one leg from the robot and
the robot can continue walk on the remaining legs. The
removed leg can be any of the 6 legs. We then dynamically
removed a pair of legs (the front, the middle, and the rear)
from the robot, and observed that the robot can continue walk
on the remaining 4 legs. We then systematically experimented
removing 2, 3, 4, 5, and 6 legs from the robot, and observed
that the robot would still walk if the remaining legs can
support the body. In other cases, the robot would still attempt
to walk on the remaining legs even if it has only one leg.
Although we have only experimented robots with up to 6 legs,
we believe in general these results can scale up to large
configurations such as centipedes that have many legs.

For the rolling track configuration, we have loaded the rules
in Table 5 onto the modules and experimented with rolling
tracks with lengths of 8, 10, and 12. In all these
configurations, the rolling track moved successfully with
speed approximately 60cm/minute. The current configurations
must have more than 6 modules and the number of modules
must be even. This is because there must be 4 modules with
DOF1=90, and at least two other modules with DOF1=0. To
test the robustness of the system against loss of messages in
the communication, we simulated random message losses in
the program. We observed that when a message of [RL,
(*,*,0), b] is lost, the robot will stop rolling momentarily and
then the head module’s local timer will reach MaxClock, and
a new hormone will be generated and the track will resume
rolling. If the lost message is [RL, (*,*,1), b], then there will
be no head module in the system, and the robot will not roll
again. However, since most messages are of the first kind, the

chance of failing to resume rolling is low. In practice, when
message losses do occur, we only observed non-recovery
stops in rare occasions.

In parallel with the experiments on the real CONRO robot,
we have also implemented with the ADC protocol on a
simulated CONRO-like robot in a software Newtonian
simulation environment called Working Model 3D [39]. Using
this three-dimensional dynamics simulation program, we have
designed a set of virtual CONRO modules to approximate the
physical properties of the real modules, including their mass,
motor torques, joints, coefficient of friction, moments of
inertia, velocities, springs, and dampers. The ADC protocol is
implemented in Java and runs on each simulated module. We
have experimented with and demonstrated successful
locomotion in various configurations, including snakes with
different length (3-12 modules) and insects with different
numbers (4-6) of legs. For the cascade actions, we have
successfully simulated the reconfiguration sequence described
in Section IV.C using the ADC protocol.

VI. DISCUSSION
This section discusses some related questions about the

ADC protocol: (1) How to deal with multiple hormone
generators in a robot? (2) How to combine multiple rule sets
and switch between them? (3) How to develop the appropriate
RULEBASE for a particular global behavior? (4) Is this
mechanism applicable to robotic systems in general?

In the above description, all the rules are so designed that
one robot has only one hormone generator at a time. For the
snake and legged robots, the generator is the head module. For
the rolling track, it is the module that has a local variable
head=1. When there are multiple hormone generators in a
robot, modules must negotiate to select one and only hormone
activity. This problem is sometimes called Distributed Task
Selection, which is a process for modules to agree and select
the same task among multiple initiated tasks in a distributed
manner. To solve this problem, we have designed a distributed
algorithm called DISTINCT. The main idea is to allow every
activated hormone generator to compete to build a spanning
tree for itself (being the root of that tree) by propagating a
tree-building message to all its neighbors. During this tree
building process, if a hormone generator module finds itself
being asked to be a part of another tree (when it receives a tree
building message from a neighbor module), it will drop its
own root status and propagate that message to its neighbors
(less the one from which the message is received) and become
a part of that tree. If any module that is already in a tree
receives another tree building message from a non-parent
neighbor module, this module will select one of these received
tasks, and designate itself as a new root and start building a
new tree by propagating a new tree-building message to all its
neighbors. This method is proved to be correct in selecting
one and only one hormone activity in a distributed network.
Interested readers can refer to [40] for details.

The second question is how to combine multiple rule sets.

 11

We notice that as long as rules in both sets do not share the
same conditions, then the two different rule sets can be
combined into one and the switch between the two behaviors
will be automatic. For example, Table 3 can be combined with
Table 4 and the result rule set can be used for demonstrating
“online behavior-shifting” between caterpillar movement and
leg movement. In particular, one can disconnect a tail/spine
module from a snake and connect it to the side of the snake,
and that module will automatically change its behavior to a
leg. A similar but reverse process will change a leg module to
a tail/spine module. Using this technique, we can dynamically
change a snake configuration to a legged robot by rearranging
modules in the body4, while the robot is still running.

The third question is how to develop an appropriate rule set
for a particular behavior. We note that the local control rules
are similar to the receptors found in biological cells and they
determine how modules react to hormones. At the current
stage, the development of these rules requires expertise in the
expected behavior and the local topological type information
about the modules in the configuration. It is still an open
problem how to develop these rules automatically.
Approaches based genetic algorithms and other machine
learning methods can be promising, but further research is
needed to generate hormone receptors automatically and
correctly. In general, the more complex the behavior is, the
more complex the set of rules and requirements are. To make
the approach feasible for obtaining for complex behaviors, a
general strategy can be suggested based on Simon’s
hierarchical and nearly-decomposable systems [41]. One first
decomposes a complex behavior into a hierarchy of sub-
behaviors and design one hormone for each of the most
primitive behaviors. Then, another set of hormones is
designed to compose the simple behaviors together. The
hormones in Table 6 are designed using this strategy. As a
direction for future research, we will develop software
methods to mechanize these hormone design procedures.

The fourth question is whether the hormone-inspired
approach described here is applicable for robotics systems in
general. Although it has been the nature of self-reconfigurable
robots that forced us to develop this distributed control
mechanism, we believe it would be easily generalized and
applied to behavior design of robots for which algorithmic,
centralized approaches are usually applied (e.g. wheeled
mobile robots). In particular, one can generalize the concept
of “connectors between modules” to “communication
channels between robots”, and then the AC and the ADC
protocols can be applied to controlling the collaborations
among distributed robotics systems in a dynamic network.
Each robot would have a number of “channels” that can be
“connected” to other robots’ channels to form “active links”
which are not necessarily physical couplings but
communication links. With this generalization, all the

advantages described in this paper could be beneficial to the
control of distributed robotics systems. One potential concern
for the scalability of the hormone-inspired protocols is that if
there are delays in the communication, the system in general
may behave erratically. It has been proven that in multi-
agent/multi-robot systems, effects of delay may create
unforeseen/emerging behavior. As a possible solution for this
problem, we propose to use hormones to adjust local timers to
compensate the delay. For example, one can image that when
a hormone message is received, the module will readjust its
local timer as a function of the hormone’s lifetime (the
number of hops it has been propagated). However, further
experiments must be conducted to verify the effectiveness of
this proposal.

4 Currently, this reconfiguration is not yet automatic. We manually

disconnect a module from one place and reconnect it to somewhere else in the
body. The automatic reconfiguration will be reported in future papers.

VII. CONCLUSIONS
This paper presents a hormone inspired control framework

for adaptive communication and distributed control in self-
reconfigurable robots. The paper argues that self-
reconfigurable robots demand a new methodology for
communication and cooperation, and the biological concept of
hormone can provide many inspirational ideas. The paper
describes the AC protocol for adaptive communication in a
dynamic and self-reconfigurable network, and the ADC
protocol for distributed control of the actions performed by
the nodes in such a network. These protocols are illustrated
through the CONRO self-reconfigurable robots. Experiments
in both real CONRO modules and in 3-D simulation have
shown that this hormone-inspired approach can support many
unique features of self-reconfigurable robots, including
adaptive communication in dynamic network, decentralized
and distributed control for collaboration among autonomous
modules, on-line reconfiguration, and scalability to larger and
multiple robotic systems.

ACKNOWLEDGMENT
We thank Andres Castano, Robert Kovac, Ramesh

Chokkalingam, Sunan Tugsinavisut, for building the CONRO
modules, Yumin Lu for developing the initial user interface
and module communication, and Behrokh Khoshnevis for the
initial design of the connectors. We also thank the anonymous
reviewers for their insightful comments and suggestions for
the earlier drafts of this paper. This research is sponsored by
DARPA/MTO under contract number DAAN02-98-C-4032,
and by AFOSR under award numbers F49620-01-1-0020 and
F49620-01-1-0441.

REFERENCES
1. Estrin, D., R. Govindan, J. S. Heidemann, S. Kumar, Next Century

Challenges: Scalable Coordination in Sensor Networks, in Mobile
Computing and Networking. 1999. p. 263-270.

2. Bonabeau, E., M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural
to Artificial Systems. 1999: Oxford University Press.

3. Felderman, R., A. DeSchon, D. Cohen, G. Finn, ATOMIC: A High-Speed
Local Communication Architecture. Journal of High Speed Networks,
1994. 1(1): p. 1-28.

4. Yim, M., Y. Zhang, D. Duff, Modular Robots, in IEEE Spectrum. 2002.

 12

5. Rus, D., Z. Butler, K. Kotay, M. Vona, Self-Reconfiguring Robots, in ACM
Communication. 2002.

6. Yim, M., Locomotion with a unit-modular reconfigurable robot (Ph.D.
Thesis), in Department of Mechanical Engineering. 1994, Stanford
University.

7. Chirikjian, G.S., A. Pamecha, I. Ebert-Uphoff, Evaluating efficiency of
self-reconfiguration in a class of modular robots. Jounral of Robotic
Systems, 1996. 13(5): p. 317-338.

8. Pamecha, A., I. Ebert-Uphoff, G.S. Chirikjian, Useful Metrics for Modular
Robot Motion Planning. IEEE Trans. on Robotics and Automation, 1997.
13(4): p. 531-545.

9. Chirikjian, G.S., J.W. Burdick,, The Kinematics of Hyper-Redundant
Robotic Locomotion. IEEE Trans. on Robotics and Automation, 1995.
11(6): p. 781-793.

10. Kotay, K., D. Rus,, Locomotion Versatility through Self-
reconfiguration. Robotics and Autonomous Systems, 1999. 26: p. 217--
232.

11. Castano, A., W.-M. Shen, P. Will, CONRO: Towards Miniature Self-
Sufficient Metamorphic Robots. Autonomous Robots, 2000. 8: p. 309-324.

12. Castano, A., P. Will. Representing and Discovering the Configuration
of CONRO Robots. in Intl. Conf. on Robotics and Automation. 2001.
Seoul, Korea.

13. Rus, D., M. Vona, Crystalline Robots: Self-Reconfiguration with
Compressible Unit Modules. J. of Autonomous Robots, 2001. 10(1): p.
107-124.

14. Unsal, C., H. Kiliccote, P.K. Khosla, A modular self-reconfigurable
bipartite robotic system: Implemenation and motion planning.
Autonomous Robots, 2001. 10: p. 23-40.

15. Yoshida, E., S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, S.
Kokaji. A motion planning method for a self-reconfigurable modular
robot. in Int. Conf. on Intelligent Robots and Systems. 2001. Hawaii, US.

16. Kamimura, A., S. Murata, E. Yoshida, H. Kuraokawa, K. Tomita, S.
Kokaji. Self-Reconfigurable Modular Robot --- Experiments on
reconfiguration and locomotion. in Int. Conf. on Intelligent Robots and
Systems. 2001. Hawaii, US.

17. Fukuda, T., and Y. Kawauchi. Cellular robotic system (CEBOT) as one
of the realization of self-organizing intelligent universal manipulator. in
Proceedings of the IEEE International Conference on Robotics
Automation. 1990.

18. Murata, S., H. Kurokawa, S. Kokaji. Self-assembling machine. in
Proceedings of the IEEE International Conference on Robotics
Automation. 1994.

19. Yoshida, E., S. Murata, K. Tomita, H. Kurokawa, and S. Kokaji.
Distributed formation control of a modular mechanical system. in
Proceedings of the International Conference on Intelligent Robots and
Systems. 1997.

20. Yoshida, E., S. Murata, H. Kurokawa, K. Tomita, S. Kokaji. A
distributed reconifuration method for 3-D homogeneous structure. in In
Proc. IEEE/RSJ Intl. Conf. Intelligent Robotics and Systems. 1998.

21. Tomita, K., S. Murata, H. Kurokawa, E. Toshida, S. Kokaji, Self-
Assembly and Self-Repair Method for a Distributed Mechanical System.
IEEE Trans. on Robobtics and Automation, 1999. 15(6): p. 1035-1045.

22. Murata, S., E. Yoshida, H. Kurokawa, K. Tomita, S. Kokaji, Self-
Repairing Mechanical Systems. Autonomous Robots, 2001. 10: p. 7-21.

23. Shen, W.M., Y. Lu, P. Will. Hormone-based Control for Self-
Reconfigurable Robots. in Proceedings of International Conference on
Autonomous Agents. 2000. Barcelona, Spain.

24. Shen, W.M., B. Salemi, and P. Will. Hormones for Self-Reconfigurable
Robots. in Proceedings of the 6th International Conference on Intelligent
Autonomous Systems. 2000. Venice, Italy.

25. Salemi, B., W.-M. Shen, P. Will. Hormone-Controlled Metamorphic
Robots. in International Conference on Robotics and Automation. 2001.
Seoul, Korea.

26. Shen, W.M., P. Will. Docking in Self-Reconfigurable Robots. in
International Conference on Intelligent Robots and Systems. 2001. Hawaii.

27. Stoy, K., . W.M. Shen, P. Will. Global Locomotion from Local
Interaction in Self-Reconfigurable Robots. in The 7th International
Conference on Intelligent and Autonomous Systems. 2002. Marina del Rey,
CA.

28. Stoy, K., WM. Shen, P. Will. How to make a self-reconfigurable robot
run? in Joint Conference of ICAMS and Autonomous Agents. 2002.

29. Bojinov, H., A. Casal, and T. Hogg. Multiagent Control of Self-
Reconfigurable Robots. in International Conference on Multi-Agent
Systems. 2000.

30. Yim, M., Y. Zhang, J. Lamping, E. Mao, Distributed Control for 3D
Metamorphosis. Autonomous Robots, 2001. 10: p. 41-56.

31. Vassilvitskii, S., M. Yim, J. Suh. A complete, local and parallel
reconfiguration algorithm for cube style modular robots. in Intl. Conf. on
Robotics and Automation. 2002. Washington, DC.

32. Butler, Z., K. Kotay, D. Rus, K. Tomita. Generic Decentralized Control
for a Class of Self-Reconfigurable Robots. in Intl. Conf. on Robotics and
Automation. 2002. Washington DC.

33. Ihara, H., K. Mori, Autonomous Decentralized Computer Control
Systems. IEEE Computer, 1984. 17(8): p. 57-66.

34. Mori, K., S. Miyamoto, H. Ihara, Autonomous decentralized computer
system and software structure. Computer Systems Science and
Engineering, 1985. 1(1): p. 17-22.

35. Mori, K. Autonomous decentralized system technologies and their
application to train transport operation system. in High Integrity Software
Conference. 1999. Albuquerque, New Mexico.

36. Fahlman, S., Three Flavors of Parallelism, . 1982, Carnegie Mellon
Universtiy: Pittsburgh, PA.

37. Arkin, R.C., Homeostatic Control for a Mobile Robot: Dynamic
Replanning in Hazardous Environments. Journal of Robotic Systems,
1992. 9(2): p. 197-214.

38. Sims, K. Evolving Virtual Creatures. in Computer Graphics, Annual
Conference Series, (SIGGRAPH '94 Proceedings). 1994.

39. UserManual, Knowledge Revolution Working Model 3D User's
Manuals. 1997.

40. Salemi, B., W.M. Shen, P. Will. Distributed Task Selection in Chain-
type Metamorphic Robots. in Intl Conference on Robotics and Automation
(submitted). 2003. Taiwan.

41. Simon, H.A., The Sciences of Artificial. 1996: The MIT Press.

	INTRODUCTION
	Related Work
	adaptive communication
	Self-Reconfigurable Modules and Networks
	The Representation of Local Topology
	The Adaptive Communication Protocol

	hormone-inspired distributed control
	The Adaptive and Distributed Control Protocol
	Other Locomotion Examples of the ADC Protocol
	Distributed Control of Cascade of Actions

	Experimental Results
	Discussion
	Conclusions

