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Abstract—This paper presents a biologically inspired approach 

to two basic problems in modular self-reconfigurable robots: 
adaptive communication in self-reconfigurable and dynamic 
networks, and collaboration between the physically coupled 
modules to accomplish global effects such as locomotion and 
reconfiguration. Inspired by the biological concept of hormone, 
the paper develops the Adaptive Communication (AC) protocol 
that enables modules continuously to discover changes in their 
local topology, and the Adaptive Distributed Control (ADC) 
protocol that allows modules to use hormone-like messages in 
collaborating their actions to accomplish locomotion and self-
reconfiguration. These protocols are implemented and evaluated, 
and experiments in the CONRO self-reconfigurable robot and in 
a Newtonian simulation environment have shown that the 
protocols are robust and scaleable when configurations change 
dynamically and unexpectedly, and they can support online 
reconfiguration, module-level behavior shifting, and locomotion. 
The paper also discusses the implication of the hormone-inspired 
approach for distributed multiple robots and self-reconfigurable 
systems in general. 

 
Index Terms — Self-reconfigurable robots, self-reconfigurable 

systems, adaptive communication, dynamic networks, distributed 
control, and multi-agent systems. 

I. INTRODUCTION 

S elf-reconfigurable robots, in one class,  are made of 
autonomous modules that can connect to each other to 

form different configurations. The connections between 
modules can be changed autonomously by actions of the 
modules themselves. Furthermore, since each module is 
autonomous (has its own controller, communicator, power 
source, sensors, actuators, and connectors), modules in a self-
reconfigurable robot must collaborate and synchronize their 
actions in order to accomplish desired global effects. Because 
of this dynamism, solutions must be provided so that 
communication and control among modules can be adaptive to 
topological changes in the network. 

As an example of a chain-typed self-reconfigurable robot, 
Fig. 1 shows the CONRO robot system made of small-sized 
modules that can autonomously and physically connect to 

each other to form different configurations such as chains, 
trees, (e.g., legged-bodies), or loops. The top left picture 
shows a single autonomous CONRO module; the top right 
picture shows a CONRO chain (snake) configuration with 
eight modules, the bottom left has two CONRO insects (tree 
configuration) each of which has six modules for legs and 
three modules for the spine, and the bottom right is a CONRO 
loop configuration with eight modules. Each configuration can 
perform its locomotion, and the robot can autonomously 
change configurations in limited situations. For movies and 

more information about CONRO robots, including automatic 
docking, please visit http://www.isi.edu/conro. 

 

 
 
Fig. 1. CONRO module and snake, insects, and rolling track configurations. 
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This paper addresses two basic problems for modular self-
reconfigurable robots: how modules in these robots 
communicate with each other when connections between them 
may be changed dynamically and unexpectedly (thus changing 
their communication routing), and how these physically 
coupled modules collaborate their local actions to accomplish 
global effects such as locomotion and reconfiguration. The 
solutions to these problems may also be applicable to self-
reconfigurable systems in general. Examples of such systems 
include distributed sensor networks [1] and swarm robotic 
systems [2]. 

Specifically, modules in a self-reconfigurable robot must 
coordinate their actions to achieve given missions. Such 
coordination must be dynamic, to deal with the changes in 

http://www.isi.edu/conro
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network topology; asynchronous, to compensate the lack of 
global clocks; scalable, to support shape-changing and enable 
global efforts based on weak local actuators; and reliable, to 
recover from local damages in the system and provide fault-
tolerance. 

In the context of communication, a self-reconfigurable 
robot can be viewed as a network of nodes that can change 
and reconfigure their connections dynamically and 
autonomously. Messages in normal practice are passed 
between connections using named addresses (such as in the 
Internet) and are routed from the source to the destination. 
Various addressing and routing strategies are possible: Single 
messages can go from one module to the next one; Broadcast 
messages go to all nodes directly; Multicast messages go to 
several specific nodes.  Routing may be best-effort as in the 
Internet, or source-routed as in some supercomputers [3]. 
Dynamically changing the topology requires continually 
determining the address and computing the route. This needs 
continual rediscovery of connection topology at the module 
level. Each module should discover and monitor unexpected 
local topology changes in the network, and adapt to such 
changes by reorganizing its relationships with other modules 
using their connectors. The concept of connector is widely 
applicable to many different types of networks. For example, 
in a supercomputing network the connectors are the channels 
that connect nodes to their neighbors [3]. In a wireless 
network, the connectors of a node are the channels available 
for communication. In self-reconfigurable robots, the 
connectors are physical so that a link is a physical coupling 
and a network of nodes can form physical structures with 
different shapes and sizes. For example, the physical 
connectors in CONRO must be joined and disjoined 
physically to change shape. Such changes in the network 
topology make a CONRO robot a dynamic network. 

The control of the motion or locomotion of reconfigurable 
robotics, due to the frequent changes in topology, presents 
another special challenge since the action messages may need 
to be directed to the modules doing a specific function rather 
than to a specific module. Ideally, the modules should 
coordinate their actions by their locations in the current 
configuration, not by their names or identifiers. For example, 
the message should be sent to the “knee” module in the 
present configuration not to module #37 that perhaps was the 
knee on the old configuration. With this ability, a module 
should be able to automatically switch its behavior if its 
role/location is changed in the configuration. Furthermore, a 
control message may also require concerted actions. In other 
words, the message intent may be to execute an action for the 
robot to “go forward” rather than require the sending of 
several messages to swing the hip, bend the knee, bend the 
ankle and flex the toes and do this in spite of different 
modules being swapped into and out of the configuration as 
the system evolves. 

This paper presents a biologically inspired approach to 
address the above challenges and mimic the concept of 
hormones used among biological cells for both 

communication and control. A biological organism can have 
many hormones acting simultaneously and without interfering 
with each other, each hormone affecting only specific targeted 
sites. The main idea is that a single “hormone” signal can 
propagate through the entire network of modules, yet cause 
different modules to react differently based on their local 
“receptors,” sensors, topology connections, and state 
information. Computationally speaking, a hormone signal is 
similar to a content-based message but has the following 
unique properties: (1) it has no specific destination; (2) it 
propagates through the network; (3) it may have a lifetime; 
and (4) it may trigger different actions for different receivers. 
Notice that hormone propagation is different from message 
broadcasting. A single hormone may cause multiple effects on 
the network and different nodes may behave differently when 
receiving the same hormone. Furthermore, there is no 
guarantee that every node in the network will receive the same 
copy of the original signal because a hormone signal may be 
modified during its propagation.  

To apply this idea to adaptive communication, we view 
each module in a dynamic network as an active cell that can 
continuously discover its local topological changes and adjust 
its communication strategy accordingly. We design the 
Adaptive Communication (AC) protocol for all modules to 
discover and monitor their local topology and ensure the 
correct propagation of hormone messages in the network. This 
property holds regardless of the changes in the network 
topology. 

To support distributed control with dynamic network 
topology, we view locomotion as the effect achieved by the 
interaction on the environment of executing a certain set of 
actions intrinsically in the robot. For instance, an automobile 
moves forward when the running engine is engaged with the 
wheels, provided among other things that there is enough 
friction between the tires and the road. In our robot we 
execute a certain set of intrinsic motions and the interaction of 
these motions with the environment causes locomotion. 
Motion execution is thus execution of module actions in the 
robot connection topology plus its interaction with the 
environment. The hormone concept described above in the 
context of topology discovery applies equally well to motion 
execution. We have designed the Adaptive Distributed 
Control (ADC) protocol for this purpose and applied it to the 
control of CONRO-like self-reconfigurable robots. 

The rest of the paper is organized as follows. Section II 
discusses the related work. Section III presents a general 
method for topology discovery and the AC protocol. Section 
IV extends the AC protocol to the ADC protocol for both 
distributed control and adaptive communication among self-
reconfigurable modules. Section V presents the experimental 
results of applying the hormone-inspired control protocols to 
the CONRO robot. Finally, Section VI discusses some 
fundamental questions about the hormone inspired approaches 
and suggests future research directions. 
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II. RELATED WORK 
The communication and control of self-reconfigurable 

robots is a challenging problem and the approaches for the 
problem can be either centralized or distributed. From the 
viewpoint of flexibility and reliability, the distributed 
approaches are generally preferred for the self-reconfigurable 
robots. Two recent general articles [4, 5] have provided a 
good survey of the field. 

Related work for centralized control includes Yim et al. [4, 
6] in which configuration-dependent gait control tables are 
used to specify actions for each module for each step. 
Chirikjian et al. [7, 8] study the metric properties of 
reconfigurable robots and Chirikjian and Burdick [9] propose 
a mathematical model for controlling hyper-redundant robot 
locomotion. Kotay and Rus [10] propose a control algorithm 
for controlling molecular robots. Castano et al. [11, 12] use a 
centralized approach for controlling locomotion and 
discovering network topology. Rus and Vona [13] use the 
Melt-Grow planner for the Crystalline robot. Unsal et al. [14] 
utilize a centralized planner for bipartite self-reconfigurable 
modules. Most recently, Yoshida et al. [15] and Kamimura et 
al. [16] demonstrate the online reconfiguration 
(reconfiguration while locomotion) using a centralized 
method. 

Related work for distributed control includes Fukuda and 
Kawauchi’s control method for CEBOT [17], the series of 
control algorithms proposed by Murata et al. [18-22] for self-
assembly and self-repairing robots, the hormone-based 
distributed control method proposed by Shen et al. [23-26], 
and the role-based control method by Stoy et al. [27, 28]. 
Most recently, several distributed methods have been 
proposed for lattice-based robots, including a “secent”-based 
approach by Bojinov et al. [29], a goal-ordering based 
approach by Yim et al. [30], a parallel planner by Vassilvitskii 
et al. [31], and an automata-based approach by Butler et al. 
[32]. 

The distributed control method proposed in this paper is 
different from the previously proposed distributed control 
methods in several aspects. First, a module selects actions 
based on multiple sources of local information, including the 
local topology, the sensory inputs, the local state variables, 
and most importantly the received hormone messages. 
Second, the local topology defined in this paper distinguishes 
the connectors of a neighboring module and treat different 
connectors differently. In other words, a module knows not 
only that its connector cx has a neighbor, but also the name of 
the connector to which cx is connected. This provides more 
power for topology representation. Third, the method 
proposed here can deal with both locomotion and 
reconfiguration using the same unified framework. This has 
been demonstrated through the ability of distributed online 
reconfiguration on a chain-based real robot. To the best of our 
knowledge, such a demonstration has not been done before. 
Fourth, the method described here has wider application scope 
than the Cartesian lattice, and can support modules that have 

internal deforming actions such as pitch, yaw, and roll. 
The concept of hormone has previously inspired several 

researchers to build equivalent computational systems. 
Autonomous Decentralized Systems (ADS) [33, 34] is 
perhaps the earliest attempt to use hormone-inspired 
methodology to build systems that are robust, flexible, and 
capable of doing on-line repair. In ADS, the Content Code 
Communication Protocol was developed for autonomous 
systems to communicate not by “addresses” but by the content 
of messages. The ADS technology has been applied in a 
number of industrial problems [35], and has the properties of 
on-line expansion, on-line maintenance, and fault-tolerance. 
However, ADS systems have yet been applied to self-
reconfiguration. Another similar approach is proposed in [36] 
where markers are passed in a network to dynamically form 
sets of nodes for performing parallel operations. Finally, 
biologically inspired control methods have also been used for 
robot navigation [37]. 

III. ADAPTIVE COMMUNICATION 
As described above, the modules in a self-reconfigurable 

robot are reconfigured structurally. The physical interpretation 
of this action is that shape morphing occurs. The connectivity 
interpretation is that the modules have a new communication 
network topology. The control implication is that global 
actions such as locomotion require a re-computation of the 
local actions to be executed by the individual modules. These 
local actions depend on the position of the module in the 
reconfigured structure. To the best of our knowledge, such 
control approach can support some unique and new 
capabilities, such as distributed and online bifurcation, 
unification, and behavior-shifting, which have not been seen 
before in robotics literature. For example, a moving snake 
robot with many modules may be bifurcated into pieces, yet 
each individual piece can continue to behave as an 
independent snake. Multiple snakes can be concatenated (for 
unification) while they are running and become a single but 
longer snake. For behavior-shifting, a tail/spine module in a 
snake can be disconnected and reconnected to the side of the 
body, and its behavior will automatically change to a leg (the 
reverse process is also true). In fault tolerance, if a multiple 
legged robot loses some legs, the robot can still walk on the 
remaining legs without changing the control program. All 
these abilities would not be possible if modules could not cope 
with the topological changes in the communication network.  

In this section, we describe an adaptive communication 
protocol for dynamic networks such as those used in self-
reconfigurable robots. Using this protocol, modules can 
communicate even if the topology of the network is changing 
dynamically and unexpectedly. Communication with this 
protocol will be shown to be robust, flexible, and will allow 
reconfiguration while the network is in operation. The 
reconfiguration can either be self-initiated, superimposed by 
external agents, or in response to sensor interaction with the 
environment. 
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A. Self-Reconfigurable Modules and Networks 
To illustrate the concept of adaptive communication in a 

self-reconfigurable network, we will use the CONRO robot as 
an example. As shown in Fig. 1, a CONRO robot consists of a 
set of modular modules that can connect/disconnect to each 
other to form different robot configuration. The detail of a 
single module is shown in Fig. 2. Each CONRO module is a 
generalized-cylinder that is 4.0 inch long and 1.0 inch2 in 
diameter. Every module is autonomous, self-sufficient, and 
equipped with a micro-controller, two motors, two batteries, 
four connectors for joining with other modules, and four pairs 
of infrared emitter/sensor for communication and docking 
guidance. 

The movements of modules are actuated by two 
servomotors, which provide the pitch (up and down) rotation 
called DOF1 and the yaw (left and right) rotation called 
DOF2. With these two degrees of freedom, a single module 
can wiggle its body and has a limited ability to move. 
However, when two or more modules connect to form a 
structure, they can accomplish many different types of 
locomotion. For example, a chain of modules can mimic a 
snake or a caterpillar, a body with legs can perform insect or 
centipede gaits, and a loop can move as a rolling track. Karl 
Sims [38] has studied this question in details and developed a 
system for discovering the motion possibilities of different 
block structures. To some extent, CONRO provides a physical 
implementation of his results. 

The control program on a CONRO module is written in the 
BASIC language and is running on the on-board STAMP II 
micro-controller that has only 2K bytes of ROM for programs 
and 32 bytes of RAM for variables.  Such a tight 
computational resource poses additional challenges for the 
control program. We believe that the simplicity and efficiency 
of hormone-inspired approach has contributed greatly to the 
successful implementation of all functions and programs on 
board. 

CONRO modules can connect to each other by their 
docking connectors located at either end of each module. At 
one end, called the module’s back, is a female connector, 
which has two holes for accepting another module’s docking 
pins, a spring-loaded latch for locking the pins, and an Shape 
Memory Alloy (SMA)-triggered mechanism for releasing the 
pins. At the other end of a module, three male connec ors are 

located on three sides of the module, called front, left, and 
right. Each male connector consists of two pins. When a male 
connector and a female connector are joined together, we call 
the connection an active link. The connected modules are 
called neighbors. 

CONRO modules communicate with each other through 
active links. Each connector has an infrared transmitter and an 
infrared receiver, and they are arranged in such a way that 
when two connectors are joined to form an active link, the 
transmitter and the receiver of one side are aligned with the 
receiver and the transmitter on the other side, forming a bi-
directional local communication link. In CONRO modules, 
such communication mechanism is established by a handshake 
between the sender and the receiver. When the sender wants 
to send a message, it turns on its infrared transmitter and waits 
for the receiver to respond. When the receiver detects the 
signal, it will turn on its transmitter and inform the sender and 
both parties will immediately enter the serial communication 
protocol (RS232 with 9600 baud rate) and the message will be 
sent and received. If there is no receiver at the other end, then 
the sender will not get any response and the procedure will 
return a timeout failure. 

 
Pitch Action (DOF1)

Yaw Action (DOF2) 

Conne ction from  
other module 

Connection from  
other module 

Connection from  
other module Connection from  

other module 

 
Fig. 2. The schema for a CONRO self-reconfigurable module, and 
four possible connections to neighbor modules. 

Fig. 3 shows a network of 9 modules (9x4 connectors) 
forming a hexapod. There are 8 active links (which use 16 
connectors) and the rest of 20 connectors are still open. Each 
active link uses two pairs of aligned infrared transmitters and 
receivers for communication. As we can see from this 
example, a CONRO robot can be viewed as a communication 
network of connected modules as well as a physically 
connected set of modules. 

Based on the above description, we define a self-
reconfigurable communication network as a connected, 
undirected graph that has the following properties: 

 

IR Receiver: IR Transmitter: Yaw motor: 

(Pitch  motors not shown) 
 

Fig. 3. A top view of a self-reconfigurable communication network 
among nine CONRO modules 

1. Each node is a self-reconfigurable module; 
2. Each node has finite, named connectors. Two connectors 

of two modules can join and form an active link but one 
connector can only be in at most one active link. 

3. Each edge is an active link;  
t
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4. The topology of the network may change dynamically, 
and active links may appear or disappear dynamically; 

5. Nodes can only communicate through active links; 
6. Nodes do not know the network size nor have unique IDs. 

B. The Representation of Local Topology 
We represent the local topology of a CONRO module in a 

self-reconfigurable network based on how its connectors are 
connected to the connectors of its neighbor modules. Shown 

in Fig. 4, a module is type T0 if it does not connect to any 
other modules. A module is type T1 if its back connector, b, is 
connected to the front, f, of another module. A module is type 
T2 if its front connector is connected to the back of another 
module. A module is type T16 if its back is connected to the 
front of a neighbor and its front is connected to the back of 
another neighbor. A module is type T21 if its back is 
connected to the front of another module, and its left, l, and 
right, r, are connected to the backs of other two modules 
respectively. Note that every active link is a pair of the 
connector b (the only female connector in a CONRO module) 
and one of the three male connectors, f, l, and r. There are 32 
types of local topology as listed in Table 1 and these types are 
ordered by the number of active links they have. For example, 
type T0 has no active links; types T1 through T6 have one 
active link, types T7 through T18 have two active links, types 
T19 through T28 have three active links, and types T29 
through T31 have four active links. 

 
TABLE 1: THE LOCAL TOPOLOGY TYPES OF CONRO MODULES

This Module      This Module  
b f r l Type b f r l Type 
    T0 f b   T16 
f    T1 f  b  T17 
 b   T2 f   b T18 
  b  T3  b b b T19 
   b T4 f b b  T20 
l    T5 f  b b T21 
r    T6 f b  b T22 
 b b  T7 l b b  T23 
  b b T8 l  b b T24 
 b  b T9 l b  b T25 
l b   T10 r b b  T26 
l  b  T11 r  b b T27 
l   b T12 r b  b T28 
r b   T13 f b b b T29 
r  b  T14 l b b b T30 

C
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ed
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r   b T15 

 

r b b b T31 

C. The Adaptive Communication Protocol 
Using the concept of hormone messages and local 

topological types defined above, we can define the Adaptive 
Communication (AC) protocol for continual rediscovery of 
network topology and ensure adaptive communication. Fig. 5 
shows the pseudo-code program for the AC protocol. The 
main procedure is a loop of receiving and sending 
(propagating) “probe” hormones between neighbors, and 
selecting and executing local actions based on these messages. 
A probe is a special type of hormone that is used for 
continuously discovering and monitoring local topology. 
Other types of hormones that can trigger more actions will be 
introduced later. All modules in the network run the same 
program, and every module detects changes in its local 
topology (i.e., the changes in the active links) by sending 
probe messages to its connectors to discover if the connectors 
are active or not. The results of this discovery are maintained 
in the vector variable LINK[C], where C is the number of 
connectors for each module (e.g., C=4 for a CONRO module). 
If there is no active link on a connector c (or an existing active 

T0 l 

r 
f b 

T16T1  T2 T16 

T5 T5 T5 

T6 T6 T6 

T21 T29 T19 

 
 

Fig. 4. Some example topological types (T0, T1, T2, T5, T6, 
T16, T21, T29) of CONRO modules (f, l, r, b are connectors).

OUT: the queue of messages to be sent out; 
IN: the queue of messages received in the background; 
C: the number of connectors for each module; 
MaxClock: the max value for the local timer; 
LINK[1,…,C]: the status variables for the connectors (i.e., the 
local topology), and their initially values are nil; 
A hormone is a message of [type, data, sc, rc], where sc is the 
sending connector through which the message is sent, and rc is 
the receiving connector through which the message is received. 
 
Main() 
LocalTimer = 0; 
Loop forever: 
   For each connector c=1 to C, insert [probe,_,c,_] in OUT; 
   For each received hormone [type, data, sc, rc] in IN, do:  
 {  LINK[rc] = sc; 

   If (type ≠ probe) then  
  SelectAndExecuteLocalActions(type, data); 

   PropagateHormone(type, data, sc, rc); 
 } 
   Send(); 
   LocalTimer = mod(LocalTimer+1, MaxClock); 
End Loop. 
 
SelectAndExecuteLocalActions(type, data) 
{ // For now, assume that when LocalTimer=0, a module will 
  // generate a test hormone to propagate to the network 
  // Other possible local actions will be introduced later. 
  If LocalTimer==0, then for c=1 to C, do: 
 Insert [Test, 0, c, nil] into OUT; 
} 
   
PropagateHormone(type, data, sc, rc) 
{ For each connector c=1 to C, do: 
     If LINK[c]≠0 and c≠rc, then 
 { Delete [probe, *, c, *] from OUT; 
   Insert [type, data, c, nil] into OUT; // propagation 
 } 
} 
 
Send() 
{ For each connector c=1 to C, do: 
 get the first message [type,*,c,*] from OUT, 
 Send the message through the connector c; 
 If send fails (i.e., time out), LINK[c] = 0. 
} 

Fig. 5. The Adaptive Communication (AC) Protocol 
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link on c is disconnected), then sending of a probe to c will 
fail and LINK[c] will be set to nil. If a new active link is just 
created through a connector c, then sending a probe to c will 
be successful and LINK[c] will be updated. After one 
exchange of probes between two neighbors, both sides will 
know which connector is involved in the new active link and 
their LINK variables will be set correctly2. 

The AC protocol has a number of important properties that 
are essential for adaptive communication in self-
reconfigurable networks. 

Proposition 1: Using the AC protocol, all modules can 
adapt to the dynamic topological changes in the self-
reconfigurable network and discover their local topology in a 
time less than two cycles of the main loop. The updated local 
topology information is stored in LINK[c]. 

To see this proposition is true, notice that initially all LINK 
variables have a nil value. If a module has a neighbor on its 
connector c, then LINK[c] will be set properly when this 
module receives a probe on that connector. Since every 
module probes all its connectors in every cycle of the 
program, the LINK[c] will be updated correctly with at most 
two cycles. 

Proposition 2: If the network is acyclic graph, then the AC 
protocol guarantees that every non-probe message will be 
propagated to every module in the network once and only 
once. The time for propagating a hormone to the entire 
network is linear to the radius of the network graph. 

To see that proposition 2 is true, notice that when a new 
message is generated (e.g., [Test,*,*,*] in Fig. 5), it will be 
sent to all active links from that module. When a module 
receives a hormone, it will send it to all active links except the 
link from which the hormone is received. Since the network is 
acyclic, the generator module can be viewed as the root of a 
propagation tree, where each module will receive the hormone 
from its parent, and will send the hormone to all its children. 
The propagation will terminate at the leaf nodes (modules) 
where there is no active links to propagate. Since the tree 
includes every module, the hormone reaches every node. 
Since every module in the tree has only one parent, the 
hormone will be received only once by any module. 

For networks that contain loops (cyclic graphs), the AC 
protocol must be extended to prevent a hormone from 
propagating to the same module again and again. To ensure 
that each hormone is received once and only once by every 
module, additional local information (such as local variables) 
must be used to “break” the loop of communication. We will 
illustrate the idea in the ADC protocol when we describe the 
control of rolling tracks, which is a cyclic network. 

 
2 For example, if an active link is created between the connector x of 

module A and the connector y of module B, then LINK[x]=y for module A, 
and LINK[y]=x for module B. The LINK[C] variable represents the local 
topology type of a CONRO module. For example, a module is type T0 if 
LINK[f,l,r,b] = [nil,nil,nil,nil]; type T2 if LINK[f,l,r,b] = [b,nil,n nil]; and 
type T21 if LINK[f,l,r,b] = [nil,b,b,f]. 

IV. HORMONE-INSPIRED DISTRIBUTED CONTROL 
As described above we want a distributed control protocol 

that is identity free but supports a module to select its actions 
based on its location in the network. Since hormones can 
trigger different actions at different site and every module 
continuously discoveries its local topology, such a control 
method can be defined based on the hormone messages. 

To illustrate the idea, let us first consider an example of 
how hormones are used to control the locomotion of a 
metamorphic snake robot. Fig. 6 illustrates a 6-module 
CONRO snake robot and its caterpillar gait. The types of 
modules, from the left to the right, in this robot are: T1 (the 
head), T16, T16, T16, T16, and T2 (the tail). To move 
forward, each module’s pitch motor (DOF1) goes through a 
series of positions and the synchronized global effect of these 
local motions is a forward movement of the whole caterpillar 
(indicated by the arrow). In general, the wavelength of the gait 
can be flexible (e.g., a single module can craw as a 
caterpillar). The example in Fig. 6 shows a wavelength of 
four, but other wavelengths can be defined similarly. 

To completely specify this gait, one can use a conventional 
gait control table [6] shown in Table 2, where each row in the 
table corresponds to the target DOF1 positions for all modules 
in the configuration during a step. Each column corresponds 
to the sequence of desired positions for one DOF1. The 
control starts out at the first step in the table, and then 
switches to the next step when all DOF1 have reached their 
target position in the current step. When the last step in the 
table is done, the control starts over again at step 0. As we can 
see in Table 2, the six columns correspond to the six module’s 
DOF1 in Fig. 6 (the leftmost is M1, and the rightmost is M6). 
The first row in this table corresponds to Step 0 in Fig. 6. 

 

Step0 

+45

-45 -45

+45 +45

-45
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f
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f 
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f 
b 

b 
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b

b 

b

 
 

Fig. 6. A caterpillar (or nessie) movement 
 (b and r are connectors, and +45 and –45 are DOF1) 

TABLE 2:  THE CONTROL TABLE  FOR  THE CATERPILLAR MOVE 
Step Module ID for DOF1 actions 

 M1 M2 M3 M4 M5 M6 
0 +45° -45° -45° +45° +45° -45° 
1 -45° -45° +45° +45° -45° -45° 
2 -45° +45° +45° -45° -45° +45° 
3 +45° +45° -45° -45° +45° +45° 

 
The problem of this conventional gait table method is that it 

is not designed to deal with the dynamic nature of robot 
configuration. Every time the configuration is changed, no 
matter how slight the modification is, the control table must be 
rewritten. For example, if two snakes join together to become 
one, a new control table must be designed from scratch. A 
simple concatenation of the existing tables may not be 
appropriate because their steps may mismatch. Furthermore, 
il,
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when robots are moving on rough ground, actions on each 
DOF cannot be determined at the outset. 

To represent a locomotion gait using the hormone idea, we 
notice that Table 2 has a “shifting” pattern among the actions 
performed by the modules. The action performed by a module 
m at step t is the action to be performed by the module (m-1) 
at step (t+1). Thus, instead of maintaining the entire control 
table, this gait is represented and distributed at each module as 
a sequence of motor actions (+45°, -45°, -45°, +45°). If a 
module is performing this caterpillar gait, it must select and 
execute one of these actions in a way that is synchronized and 
consistent with its neighbor module. To coordinate the actions 
among modules, a hormone can be used to propagate through 
the snake and allow each module to inform its immediate 
neighbor what action it has selected so the neighbor can select 
the appropriate action and continue the hormone propagation. 
This example also illustrates that hormones are different from 
broadcasting messages because their contents are changing 
during the propagation. 

A. The Adaptive and Distributed Control Protocol 
To implement the hormone-inspired distributed control on 

the AC protocol, each module must react to the received 
hormones with appropriate local actions. These actions 
include the commands to local sensors and actuators, updates 
of local state variables, as well as modification of existing 
hormones or generation of new hormones. Modules determine 
their actions based on the received hormone messages, their 
local knowledge and information, such as neighborhood 
topology (module types) or the states of local sensors and 
actuators. 

For these purpose, we specify the Adaptive and Distributed 
Control (ADC) protocol listed in Fig. 7. The ADC protocol is 
the same as the AC protocol except that there is a 
RULEBASE and the procedure 
SelectAndExecuteLocalActions() is extended to select and 
execute actions based on the rules in the RULEBASE. The 
selection process is based on (1) local topology information 
(such as LINK[] and the module type), (2) the local state 
information (such as local timer, motor and sensor states), and 
(3) the received hormone messages. Biologically speaking, the 
rules in RULEBASE are analogous to the receptors in 

biological cells, which determine when and how to react 
incoming hormones. A module can generate new hormones 
when triggered by the external stimuli (e.g., the environmental 
features such as color or sound) or by a received hormone 
message. When there are multiple active hormones in the 
system, the modules will negotiate and settle on one hormone 
activity. 

To illustrate the idea of action selection based on rules, let 
us consider how the caterpillar movement is implemented. 
The required rules for this global behavior are listed in Table 
3. In this table, the type of the hormone message is called CP, 
and the data field contains the code for DOF1. The other 
fields of hormones are as usual, but we only show the field of 
sender connector (sc) for simplicity. 

 
TABLE 3: THE RULEBASE FOR THE CATERPILLAR MOVE 

Module 
Type 

Local 
Timer 

Received  
Hormone Data 

Perform 
Action 

Send  Hormone 

T1 0  DOF1=+45 [CP, A, b] 
T1 (1/4)*MaxClock  DOF1=-45 [CP, B, b] 
T1 (1/2)*MaxClock  DOF1=-45 [CP, C, b] 
T1 (3/4)*MaxClock  DOF1=+45 [CP, D, b] 

T16,T2  A DOF1=-45 [CP, B, b] 
T16,T2  B DOF1=-45 [CP, C, b] 
T16,T2  C DOF1=+45 [CP, D, b] 
T16,T2  D DOF1=+45 [CP, A, b] 

 
All modules in the robot have the same set of rules, but they 

react to hormones differently because each module has 
different local topology and state information. For example, 
the first four rules will trigger the head module (type T1) to 
generate and send (through the back connector b) four new 
hormones in every cycle of MaxClock, but will have no 
effects on other modules. The last four rules will not affect the 
head module, but will cause all the body modules (T16) to 
propagate hormones and select actions. These modules will 
receive hormones through the front connector f and propagate 
hormones through the back connector b. When a hormone 
reaches the tail module (T2), the propagation will stop 
because the tail module’s back connector is not active. The 
speed of the caterpillar movement is determined by the value 
of MaxClock. The smaller the value is, the more frequent new 
hormones will be generated, thus faster the caterpillar moves. 

Compared to the gait control table, the ADC protocol has a 
number of advantages. First, it supports online reconfiguration 
and is robust to a class of shape alterations. For example, 
when a snake is cut into two segments, the two disconnected 
modules will quickly change their types from T16 to T2, and 
from T16 to T1, respectively (due to the AC protocol). The 
new T1 module will serve as the head of the second segment, 
and the new T2 module will become the tail of the first 
segment. Both segments will continue move as caterpillar.  
Similarly, when two or more snakes are concatenated 
together, all the modules that are connected will become T16, 
and the new snake will have one head and one tail, and the 
caterpillar move will continue with the long snake. Other 
advantages of this hormone-inspired distributed control 
protocol include the scalability (the control will function 
regardless of how many modules are in the snake 
configuration) and the efficiency (the coordination between 

// Built on the AC protocol by adding a RULEBASE and  
// extending the following procedure. 

 
SelectAndExecuteLocalActions(type, data) 
{ // Select appropriate actions based on  
  // type, data, LINK, LocalTimer, and RULEBASE; 
  Actions SelectActions(type,data,LINK,LocalTimer,RULEBASE);
  For each action a in Actions, do ExecuteAction(a); 
} 

 
RULEBASE: 
{ // The rules here are similar to the receptors in biological cells. 
  // They are task-specific “if-then” rules as those in Table 3; 
  // Although each desired task has a different set of rules,  
  // the rules can be combined together if they are not conflicting. 
} 
 

Fig. 7. The Adaptive and Distributed Control (ADC) Protocol 
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modules requires only one hormone to propagate from the 
head to the tail). Let n be the number of modules in the snake, 
then the ADC protocol requires only O(n) message hops for 
each caterpillar step, while a centralized approach would 
require O(n2) message hops because  n messages must be sent 
to n modules. 

In general, the ADC protocol has the following properties:  
• Distributed and Fault-Tolerant. There are no permanent 

“brain” modules in the system and any module can 
dynamically become a leader when the local topology is 
appropriate. Damage to single modules will not paralyze 
the entire system. 

• Collaborative Behaviors. Modules do not require unique 
IDs yet can determine their behaviors based on their 
topology types and other local information. The global 
behaviors can be locomotion or self-reconfiguration. 

• Asynchronous Coordination. No centralized global real 
time clocks are needed for module coordination, and 
actions can be synchronized via hormone propagation. 

• Scalability. The control mechanism is robust to changes 
in configuration as modules can be added, deleted, or 
rearranged in the network. 

B. Other Locomotion Examples of the ADC Protocol 
The ADC protocol can be applied to many different robot 

configurations. All that is required is to provide the 
appropriate set of rules to the protocol and have the correct 
initial configuration in place. For example, Table 4 lists the set 
of rules that will enable a legged robot to walk. In this class of 
configuration, the module types are similar to those shown in 
Fig. 3 and Fig. 4, where a six-legged robot is shown. In other 
words, the left leg modules are T6, the right leg modules are 
T5, the head is T21, the tail T19, and the spine modules are 
T29. The hormone message used in Table 4 is named as LG. 
We use set notation such as {l,b,r} as a shorthand for the set 
of connectors to send the hormone. The action Straight means 
DOF1=DOF2=0. The action Swing means to lift a leg module, 
swing the module forward, and then put the module down on 
the ground. The action Holding means to hold a leg module on 
the ground while rotating the hip to compensate the swing 
actions of other legs. 

 
TABLE 4: THE RULEBASE FOR A LEGGED WALK 

Module 
Type 

Local 
Timer 

Received  
Hormone Data 

Perform 
Action 

Send 
Hormone 

T21, T17, T18 0  Straight [LG, A, {l,r,b}] 
T21, T17, T18 0.5*MaxClock  Straight [LG, B, {l,r,b}] 

T29, T19, T26, T28  A Straight [LG, B, {l,r,b}] 
T29, T19, T26, T28  B Straight [LG, A, {l,r,b}] 

T5  A Swing  
T6  B Holding  

 
The first two rules indicate that the head module, which can 

be type T21, T17, or T18, is to generate two new LG 
hormones with alternative data (A and B) for every cycle of 
MaxClock. This hormone propagates through the body 
modules (T29, T26, or T28) and the tail module (T19), 
alternates its data field, and reaches the leg modules, which 
will determine their actions based on their types (T5 or T6). 

This control mechanism is robust to changes in 

configurations. For example, one can dynamically add or 
delete legs from this robot, and the control will be intact. The 
speed of this gait can be controlled by the value of MaxClock, 
which determines the frequency of hormone generation from 
the head module.  

As another example of how to use the ADC protocol to 
control locomotion of self-reconfigurable robots, Figure 8 
shows the configuration of the rolling track. Notice that in this 
configuration, all modules are of type T16, only their DOF1 
values are different. The track moves one direction by shifting 
the two DOF1 values (90, 90) to the opposite direction. 

TABLE 5: THE RULEBASE FOR A ROLLING TRACK 

90 0 

90

0

90 0

90 

0

f   b f   b 

b  f b  f 

f

f 
f 
b

b 

b 

b f

Moving 
direction 

Hormone propagation 

Fig. 8. A rolling track configuration. 

Module  
Type 

Local 
Variables 

Received  
CP Data 

Perform 
Action 

Send  
Hormone 

T16 Head=1,  
Timer=MaxClock 

  
DOF1=90, Timer=0, Head=0 

 
[RL,(90,90,1),b] 

T16 DOF1=0 (90,90,1) DOF1=90, Timer=0, Head=1 [RL,(90,0,0),b]* 
T16 DOF1=0 (90,90,0) DOF1=90, Timer=0, Head=0 [RL,(90,0,0),b] 
T16 DOF1=0 (90,0,0) DOF1=0, Timer=0, Head=0 [RL,(0,0,0),b] 
T16 DOF1=0 (0,0,0) DOF1=0, Timer=0, Head=0 [RL,(0,0,0),b] 
T16 DOF1=90 (0,0,0) DOF1=0, Timer=0, Head=0 [RL,(0,90,0),b] 
T16 Head=0, DOF1=90 (0,90,0) DOF1=90, Timer=0, Head=0 [RL,(90,90,0),b] 
T16 Head=1, DOF1=90 (0,90,0) DOF1=90, Timer=0, Head=0 [RL,(90,90,1),b] 

Note: * means send the hormone after all local actions are completed. 

 
Table 5 lists the rules for a rolling track robot. The hormone 

used here is of type RL, and its data field contains two values 
of DOF1, and a binary value for selecting the head module. 
One hormone message continuously propagates in the loop 
(just as a token traveling in a token ring) and triggers the 
modules to bend (DOF1=90) or straighten (DOF1=0) in 
sequence.  We assume that there is one and only one module 
whose local variable Head=1. This module is responsible for 
generating a new hormone when there is no hormone in the 
loop. This is implemented by the first rule, which will detect a 
time-out for not receiving any hormone for a long time (i.e., 
looping through the program for MaxClock times). The head 
module is not fixed but moving in the loop. We assume that 
the initial bending pattern of the loop is correct (i.e., as shown 
in Fig. 8) and the head module is initially located at the up-
right corner of the loop. The rules in Table 5 will shift the 
bending pattern and the head position in the loop and cause 
the loop to roll into the opposite direction of hormone 
propagation. Since hormone propagation is much faster than 
the actual execution of actions, when a module is becoming 
the head, it is also responsible for making sure all actions in 
the loop are completed before the next round starts. The head 
module will hold the next hormone propagation until all its 
local actions (DOF1 moving from 0 to 90) are completed. 

Notice that the loop configuration is a cyclic network and 
module types alone are no longer sufficient to determine local 
actions (in fact all modules in the loop have the same type 
T16). In general, additional local variables (such as Head) are 
necessary to ensure the global collaborations between 
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modules in a cyclic network.  
Due to the potential of communication errors, there may be 

situations where no module has the local variable Head=1 and 
there is a need for a new head module. In such a case, it may 
be possible to create a negotiation mechanism for one module 
to switch its local variable to Head=1, if there are none in the 
group -- just like some schools of fish where a female changes 
gender if the male in the group is dead. One possible 
implementation is to allow any module to self-promote to 
become a new head if it has not received messages for a long 
time. In this case, modules must negotiate among to ensure 
that there is one and only one head in the system. This is 
sometimes called the problem of Distributed Task Selection 
and we will describe a solution later in Section VI. 

C. Distributed Control of Cascade of Actions 
Hormone-inspired distributed control can also be applied to 

the control of cascade of actions, where actions are organized 
in a hierarchical structure and a single action in a higher-level 
can trigger a sequence of lower-level actions. To illustrate the 
ideas, let us consider the example in Fig. 9, where a CONRO 
robot is reconfiguring from a quadruped to a snake. The robot 
first connects its tail with one of the feet, and then disconnects 
the connected leg from the body so that the leg is 
“assimilated” into the tail. After this “leg-tail assimilation” 
action is performed four times, the result is a snake 
configuration. Note that the middle shape in Fig. 9 is an 
illustration. In the real CONRO robot, at least 4 modules are 
needed to make a loop. 

To control this reconfiguration, the high-level actions are a 
sequence of leg-tail assimilations, while the lower-level 
actions are those that enable the tail to find a foot, to align and 
dock with the foot, and then disconnect the leg from the body. 
Using hormones, the control of the reconfiguration can be 
accomplished as follows. One module in the robot first 
generates a hormone (called LTS for changing Legs To 
Snake). This LTS hormone is propagated to all modules, but 
only the foot modules (which are types T5 or T6) will react. 
Each foot module will start generating a new hormone RCT to 
Request to Connect to the Tail. Since there are four legs at this 
point, four RCT hormones are propagating in the system. 
Each RCT carries the information about its propagation path3. 
A RCT hormone will trigger the tail module (type T2) to do 

two things: inhibit its receptor for accepting any other RCT 
hormones, and acknowledge the sender (using the path 
information in the received RCT) with a TAR (Tail Accept 
Request) hormone. Upon receiving the TAR hormone, the 
selected foot module first terminates its generation of RCT, 
and then generates a new hormone ALT (Assimilate Leg into 
Tail) to inform all the modules in the path to perform the 
lower-actions of bending, aligning, and docking the tail to the 
foot. The details of these lower-level actions are described 
elsewhere [26]. When these actions are terminated, the new 
tail module will activate its receptor for accepting other RCT 
hormones, and another leg assimilation process will be 
performed.  This procedure will be repeated until all legs are 
assimilated, regardless of how many legs are to be assimilated. 
In Table 6, we list one possible sequence of hormone 
activities for assimilating four legs shown in Fig. 9. 

 
3 A propagation path is a concatenation of all the sender connectors and 

receiver connectors through which the hormone has been sent so a  module 
along the path can trace back to the original sender. 

 
TABLE 6: THE  HORMONE ACTIVITIES FOR CASCADE ACTIONS  

Hormones Actions 
LTS Start the reconfiguration 
RCT1, RCT2, RCT3, RCT4 Legs are activated to generate RCTs 
TAR, RCT2, RCT3, RCT4 The tail accepts a RCT, and leg1 stops RCT1 
ALT, RCT2, RCT3, RCT4 The tail and leg1 perform the assimilation process 
TAR, RCT2, RCT4 The new tail accepts a RCT, and leg3 stops RCT3 
ALT, RCT2, RCT4 The tail and leg3 perform the assimilation process 
TAR, RCT2 The new tail accepts a RCT, and leg4 stops RCT4 
ALT, RCT2 The tail and leg4 perform the assimilation process 
TAR The new tail accepts a RCT, and leg2 stops RCT2 
ALT The tail and leg2 perform the assimilation process 
∅  No more RCT, and end the reconfiguration 

V. EXPERIMENTAL RESULTS 
The hormone-inspired adaptive communication and 

distributed control algorithms described above have been 
implemented and tested in two sets of experiments. The first is 
to apply the algorithm to the real CONRO modules for 
locomotion and reconfiguration. The second is to apply the 
algorithm to a CONRO-like robot in a Newtonian mechanics 
simulation environment called Working Model 3D [39]. 

 
Fig. 9. Reconfiguring a 4-leg robot into a snake body. 

All modules are loaded with the same program that 
implements the ADC protocol illustrated in Fig. 5 and Fig. 7. 
For different configurations, we have loaded the different 
RULEBASE. All modules are running as autonomous systems 
without any off-line computational resources. For economic 
reasons, the power of the modules is supplied independently 
through cables from an off-board power supplier. 

For the snake configuration, we have loaded the rules in 
Table 3 onto the modules and experimented with caterpillar 
movement with different lengths ranging from 1 module to 10 
modules. With no modification of programs, all these 
configurations can move and snakes with more than 3 
modules can move properly as caterpillar. The average speed 
of the caterpillar movements is approximately 30cm/minute. 
To test the ability of on-line reconfiguration, we have 
dynamically “cut” a 10-module running snake into three 
segments with lengths of 4, 4, and 2, respectively. All these 
segments adapt to the new configuration and continue to move 
as independent caterpillars. We also dynamically connected 
two or three independent running caterpillars with various 
lengths into a single and longer caterpillar. The new and 
longer caterpillar would adapt to the new configuration and 
ny
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continue to move in the caterpillar gait. These experiments 
show that the ADC protocol is robust to changes in the length 
of the snake configuration. 

To test whether modules can automatically generate 
hormones when they receive appropriate environmental 
stimuli from their local external sensors, we have installed two 
tilt-sensors on one of the modules in the snake configuration, 
and loaded the following rules to the modules: 

If tilt-sensors=[0,1], generate hormone [FlipLeft,*,*] 
If tilt-sensors=[1,0], generate hormone [FlipRight,*,*] 
If tilt-sensors=[1,1], generate hormone [FlipOver,*,*] 

We defined the actions for FlipLeft, FlipRight, and FlipOver 
for all the modules so that when these hormone messages are 
received, the modules will perform the correct actions for 
DOF1 and DOF2 to flip the snake back to its normal 
orientation. To test this new behavior, we manually pushed 
the snake, while it is moving as a caterpillar, to its side or 
flipped it upside down. We observed that the tilt-sensors are 
activated, new hormones are generated, a sequence of actions 
is triggered, and the robot flips back to its correct orientation. 
(See movies at http://www.isi.edu/conro.) 

For the legged configuration, we have loaded the rules in 
Table 4 onto the modules and experimented with  the various 
configurations derived from a 6-leg robot (see Fig. 3). These 
configurations can walk on different number of legs without 
changing the program and the rules. While a 6-leg robot is 
walking, we dynamically removed one leg from the robot and 
the robot can continue walk on the remaining legs. The 
removed leg can be any of the 6 legs. We then dynamically 
removed a pair of legs (the front, the middle, and the rear) 
from the robot, and observed that the robot can continue walk 
on the remaining 4 legs. We then systematically experimented 
removing 2, 3, 4, 5, and 6 legs from the robot, and observed 
that the robot would still walk if the remaining legs can 
support the body. In other cases, the robot would still attempt 
to walk on the remaining legs even if it has only one leg. 
Although we have only experimented robots with up to 6 legs, 
we believe in general these results can scale up to large 
configurations such as centipedes that have many legs. 

For the rolling track configuration, we have loaded the rules 
in Table 5 onto the modules and experimented with rolling 
tracks with lengths of 8, 10, and 12. In all these 
configurations, the rolling track moved successfully with 
speed approximately 60cm/minute. The current configurations 
must have more than 6 modules and the number of modules 
must be even. This is because there must be 4 modules with 
DOF1=90, and at least two other modules with DOF1=0. To 
test the robustness of the system against loss of messages in 
the communication, we simulated random message losses in 
the program. We observed that when a message of [RL, 
(*,*,0), b] is lost, the robot will stop rolling momentarily and 
then the head module’s local timer will reach MaxClock, and 
a new hormone will be generated and the track will resume 
rolling. If the lost message is [RL, (*,*,1), b], then there will 
be no head module in the system, and the robot will not roll 
again. However, since most messages are of the first kind, the 

chance of failing to resume rolling is low. In practice, when 
message losses do occur, we only observed non-recovery 
stops in rare occasions. 

In parallel with the experiments on the real CONRO robot, 
we have also implemented with the ADC protocol on a 
simulated CONRO-like robot in a software Newtonian 
simulation environment called Working Model 3D [39]. Using 
this three-dimensional dynamics simulation program, we have 
designed a set of virtual CONRO modules to approximate the 
physical properties of the real modules, including their mass, 
motor torques, joints, coefficient of friction, moments of 
inertia, velocities, springs, and dampers. The ADC protocol is 
implemented in Java and runs on each simulated module. We 
have experimented with and demonstrated successful 
locomotion in various configurations, including snakes with 
different length (3-12 modules) and insects with different 
numbers (4-6) of legs. For the cascade actions, we have 
successfully simulated the reconfiguration sequence described 
in Section IV.C using the ADC protocol. 

VI. DISCUSSION 
This section discusses some related questions about the 

ADC protocol: (1) How to deal with multiple hormone 
generators in a robot? (2) How to combine multiple rule sets 
and switch between them? (3) How to develop the appropriate 
RULEBASE for a particular global behavior? (4) Is this 
mechanism applicable to robotic systems in general? 

In the above description, all the rules are so designed that 
one robot has only one hormone generator at a time. For the 
snake and legged robots, the generator is the head module. For 
the rolling track, it is the module that has a local variable 
head=1. When there are multiple hormone generators in a 
robot, modules must negotiate to select one and only hormone 
activity. This problem is sometimes called Distributed Task 
Selection, which is a process for modules to agree and select 
the same task among multiple initiated tasks in a distributed 
manner. To solve this problem, we have designed a distributed 
algorithm called DISTINCT. The main idea is to allow every 
activated hormone generator to compete to build a spanning 
tree for itself (being the root of that tree) by propagating a 
tree-building message to all its neighbors. During this tree 
building process, if a hormone generator module finds itself 
being asked to be a part of another tree (when it receives a tree 
building message from a neighbor module), it will drop its 
own root status and propagate that message to its neighbors 
(less the one from which the message is received) and become 
a part of that tree. If any module that is already in a tree 
receives another tree building message from a non-parent 
neighbor module, this module will select one of these received 
tasks, and designate itself as a new root and start building a 
new tree by propagating a new tree-building message to all its 
neighbors. This method is proved to be correct in selecting 
one and only one hormone activity in a distributed network. 
Interested readers can refer to [40] for details. 

The second question is how to combine multiple rule sets. 
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We notice that as long as rules in both sets do not share the 
same conditions, then the two different rule sets can be 
combined into one and the switch between the two behaviors 
will be automatic. For example, Table 3 can be combined with 
Table 4 and the result rule set can be used for demonstrating 
“online behavior-shifting” between caterpillar movement and 
leg movement. In particular, one can disconnect a tail/spine 
module from a snake and connect it to the side of the snake, 
and that module will automatically change its behavior to a 
leg. A similar but reverse process will change a leg module to 
a tail/spine module. Using this technique, we can dynamically 
change a snake configuration to a legged robot by rearranging 
modules in the body4, while the robot is still running. 

The third question is how to develop an appropriate rule set 
for a particular behavior. We note that the local control rules 
are similar to the receptors found in biological cells and they 
determine how modules react to hormones. At the current 
stage, the development of these rules requires expertise in the 
expected behavior and the local topological type information 
about the modules in the configuration. It is still an open 
problem how to develop these rules automatically. 
Approaches based genetic algorithms and other machine 
learning methods can be promising, but further research is 
needed to generate hormone receptors automatically and 
correctly. In general, the more complex the behavior is, the 
more complex the set of rules and requirements are. To make 
the approach feasible for obtaining for complex behaviors, a 
general strategy can be suggested based on Simon’s 
hierarchical and nearly-decomposable systems [41]. One first 
decomposes a complex behavior into a hierarchy of sub-
behaviors and design one hormone for each of the most 
primitive behaviors. Then, another set of hormones is 
designed to compose the simple behaviors together.  The 
hormones in Table 6 are designed using this strategy. As a 
direction for future research, we will develop software 
methods to mechanize these hormone design procedures. 

The fourth question is whether the hormone-inspired 
approach described here is applicable for robotics systems in 
general. Although it has been the nature of self-reconfigurable 
robots that forced us to develop this distributed control 
mechanism, we believe it would be easily generalized and 
applied to behavior design of robots for which algorithmic, 
centralized approaches are usually applied (e.g. wheeled 
mobile robots). In particular, one can generalize the concept 
of “connectors between modules” to “communication 
channels between robots”, and then the AC and the ADC 
protocols can be applied to controlling the collaborations 
among distributed robotics systems in a dynamic network. 
Each robot would have a number of “channels” that can be 
“connected” to other robots’ channels to form  “active links” 
which are not necessarily physical couplings but 
communication links. With this generalization, all the 

advantages described in this paper could be beneficial to the 
control of distributed robotics systems. One potential concern 
for the scalability of the hormone-inspired protocols is that if 
there are delays in the communication, the system in general 
may behave erratically. It has been proven that in multi-
agent/multi-robot systems, effects of delay may create 
unforeseen/emerging behavior. As a possible solution for this 
problem, we propose to use hormones to adjust local timers to 
compensate the delay. For example, one can image that when 
a hormone message is received, the module will readjust its 
local timer as a function of the hormone’s lifetime (the 
number of hops it has been propagated). However, further 
experiments must be conducted to verify the effectiveness of 
this proposal. 

 
4 Currently, this reconfiguration is not yet automatic. We manually 

disconnect a module from one place and reconnect it to somewhere else in the 
body. The automatic reconfiguration will be reported in future papers. 

VII. CONCLUSIONS 
This paper presents a hormone inspired control framework 

for adaptive communication and distributed control in self-
reconfigurable robots. The paper argues that self-
reconfigurable robots demand a new methodology for 
communication and cooperation, and the biological concept of 
hormone can provide many inspirational ideas. The paper 
describes the AC protocol for adaptive communication in a 
dynamic and self-reconfigurable network, and the ADC 
protocol for distributed control of the actions performed by 
the nodes in such a network. These protocols are illustrated 
through the CONRO self-reconfigurable robots. Experiments 
in both real CONRO modules and in 3-D simulation have 
shown that this hormone-inspired approach can support many 
unique features of self-reconfigurable robots, including 
adaptive communication in dynamic network, decentralized 
and distributed control for collaboration among autonomous 
modules, on-line reconfiguration, and scalability to larger and 
multiple robotic systems. 
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