Issuesin Agent-Oriented Software Engineering

Jurgen Lind

German Research Center for Al (DFKI)
Im Stadtwald B36
D-66123 Saarbriicken, Germany

i nd@if ki . de

Abstract. In this paper, | will discuss the conceptual foundation of agent-
oriented software development by relating the fundamental elements of the agent-
oriented view to those of other, well established programming paradigms, espe-
cially the object-oriented approach. Furthermore, | will motivate the concept of
autonomy as the basic property of the agent-oriented school and discuss the de-
velopment history of programming paradigms that lead to this perspective on
software systems. The paper will be concluded by an outlook on how the new
paradigm can change the way we think about software systems.

1 Introduction

Agents and multi-agent systems are currently one of the most interesting research fields
in the computer science community; especially the natural way of capturing the struc-
ture and the behavior of complex systems has stimulated this huge interest. But is this
enough to make agent-oriented software engineering (AOSE) a new software paradigm?
What makes the idea distinctive from other approaches? How does it fit in a more gen-
eral picture of software engineering?

In this paper, | will present my personal viewpoint on agent-oriented software engi-
neering firstly by discussing the interrelationships of AOSE concepts (agent, agent ar-
chitecture, role, etc.) and secondly by relating AOSE to other programming paradigms.
Especially the relation between object-oriented and agent-oriented methods is particu-
larly interesting because they seem to be closely related. In order to clarify their rela-
tionship, 1 will describe the levels of abstraction that are involved in a certain program-
ming paradigm in general and of object-orientation and agent-orientation in particular.
I will then identify aspects they have in common as well as their main differences. Fur-
thermore, | will point out what could be the major contributions of the agent oriented
paradigm to software engineering and provide an outlook on how the new paradigm can
change the way we think about software systems.

2 Aspects of programming paradigms

The term “programming paradigm” is extremely fuzzy because it is often used to cap-
ture a set of different software-related aspects under a particular catch-phrase. These

Hard

ware
Pl

Theory ‘%

=3

£

. 8
Runtine System =

Programming Language

Design Language

Fig. 1. Levels of Abstraction

different aspects are often located on different levels of abstraction and their interrela-
tionships are seldom explicitly formulated. In this paper, | will use the triangle shown
in Figure 1 to describe the different levels of abstraction that in my view make up a
programming paradigm. The form a triangle was chosen to express the fact that the
number of concepts (and therewith the complexity) on a particular level of abstraction
increases on higher levels. Furthermore, a layered approach is quite common in com-
puter science theories to clearly separate the concepts on different levels of abstraction.
The main advantage of a layered approach is that no knowledge of lower levels is nec-
essary to understand and to work with higher level concepts because ideally, each level
of abstraction represents a conceptually closed framework. In reality, unfortunately, the
higher level theories are not only much more complex then lower level ones, but they
are often incomplete [22]. Therefore, it is often necessary to combine several higher
level theories to obtain a full coverage of the part of the world that should be modeled.

Note furthermore, that the distinctions between the different levels are not too sharp.
Because of the fact that most programming models are assumed to be essentially equal
in their computational power (Church’s thesis), any programming model can be im-
plemented in terms of any other model. Thus, it is possible to write object-oriented
software in a purely imperative programming language or to implement a deductive
database in an object-oriented framework. In the following sections, | have therefore
tried to produce a break-down of concepts that clearly separates intra-model aspects
and that allows for an inter-model comparison of these concepts. | am well aware that
some concepts can be shifted along the abstraction hierarchy, but I think that the current
assignment to a particular level is adequate.

2.1 Hardware

The first level of abstraction encapsulates the architecture that is implemented in the
computer hardware. Today, most computers still have the von Neumann architecture
that was introduced in the late 1940s [12]. The architecture consists of a processor that

is subdivided into units for computation and control and a memory store that holds the
instructions and the data of the program.

This architecture is still common in modern computers although it has been greatly
optimized by using techniques such as pipelining, caching or parallelism to speed up
computation. A recent trend in the hardware community is to turn away from integrated,
large-scale systems and towards networks of normal personal computers that jointly
work on a computationally demanding task. These virtual supercomputers combine the
advantage of lower costs through the use of standard hardware with an extreme scalabil-
ity that allows to add more computational resources whenever this is necessary. In one
vision on the future of the Internet [23], the entire net becomes a virtual supercomputer
that makes individual computational power obsolete.

However, whether sequential, parallel or distributed, from the point of view of a
programming paradigm, all hardware looks the same. There have been attempts to build
hardware architectures that implement a particular programming paradigm directly into
the hardware device, but none of these attempts has been successful. Therefore, we can
safely assume that all programming paradigms share the same ground.

2.2 Theories

On the next higher level of abstraction, however, things are different. Theories are con-
ceptualizations of a particular computational model that abstracts away from the char-
acteristics of the hardware. The first theories were aimed at capturing the in-principle
capability of a computational device in order to allow for general statements about what
can be automatically computed and what cannot [41]. Turing’s theory, for example, is
a radical mathematical conceptualization of the von Neumann architecture that enables
us to formally analyze all possible programs that can be executed on such an archi-
tecture. Other computational theories are intended as tools to help the programmer to
express the ideas of what a program is supposed to do more naturally. An early compu-
tational theory that was meant as the foundation of a “natural” way of programming is
declarative programming [17] but it has been demonstrated by empirical investigations
in cognitive psychology that this claim does not necessarily hold true [32].

Let’s start the comparison of the object-oriented and agent-oriented issues with the
entities that are handled on this level of abstraction. In the object-oriented world, these
entities are the objects. An object can be anything ranging from a concrete entity from
the real world to a conceptual entity that only exists in the designers head. Each ob-
ject within the system is associated with a particular class that determines the objects
basic properties. Classes can be linked with each other in several ways. Probably the
best known relation between two classes is inheritance that models a conceptual ex-
tension of a common base specification. During their lifetime, objects communicate by
sending messages to each other. These messages can be used to request services from
the receiving object such as to provide internal information or to change the current
state. Although there are several additional concepts in the object-oriented paradigm
I will restrict myself to this brief introduction and refer the reader unfamiliar with
object-oriented concepts to the available literature, eg. [4]. In summary, the collection
of object-oriented concepts is clear and manageable in size and does not vary greatly in
different object-oriented approaches.

In the agent-oriented universe, on the other hand, we are faced with the first serious
problem as there is no single agreed definition of the entities that are dealt with. The
existing agent theories are more or less built upon one out of two widely accepted
notions of agency [44]. In the strong notion of agency, an agent is modeled in terms
of mentalistic notions such as beliefs, desires and intentions. Furthermore, the strong
notion requires that these mental concepts have an explicit representation within the
implementation of the agent. Thus, this notion forces a white-box on the agent. The
weak notion of agency, on the other hand, requires only a black-box view on the agent
in that it defines an agent only in terms of its observable properties. According to this
definition, an agent is anything that exhibits autonomy, reactivity, pro-activity, social
ability [44].

In my opinion, these two nations of agency are both too strict. | would argue for
a more pragmatic definition of agency that allows the designer to decide what should
be an agent regardless of a particular implementation or a minimal degree of external
properties. | call this the very weak notion of agency. To explain why this absence of
formal aspects still makes sense, | have to fall back upon a famous article from the early
days of Artificial Intelligence.

In [22], the author argues that it is useful to ascribe mental qualities such as beliefs,
goals, desires, wishes etc. to machines (or computer programs) whenever it helps us to
understand the structure of a machine or a program or to explain or predict the behavior
of the machine or the program. McCarthy does not impose any constraints such as a
minimal required complexity onto the entities that we want to ascribe mental categories
or onto the mental categories that we would like to use. In his view, ascribing mental
qualities is a means of understanding and of communication between humans, ie. it is a
purely conceptual tool that serves the purpose of expressing existing knowledge about
a particular program or its current state.

“All the [...] reasons for ascribing belief’s are epistemological; i.e. ascrib-
ing beliefs is needed to adapt to limitations on our ability to acquire knowledge,
use it for prediction, and establish generalizations in terms of the elementary
structure of the program. Perhaps this is the general reason for ascribing higher
levels of organization to systems.”

To illustrate why this point of view is reasonable, McCarthy uses the example of a
program that is given in source code form. It is possible to completely determine the
programs behavior by simulating the given code, ie. no mental categories are necessary
to describe this behavior. Why would we still want to use mental categories to talk and
reason about the program? In the original paper, McCarthy discusses several reasons
for this. In the following list, | have selected those reasons that seem to be most relevant
to me:

1. The programs state at a particular point in time is usually not directly observable.
Therefore, the observable information is better expressed in mental categories.

2. A complete simulation may be too slow, but a prediction about the behavior on the
basis of the ascribed mental qualities may be feasible.

3. Ascribing mental qualities can lead to more general hypothesis about the programs
behavior then a finite number of simulations.

4. The mental categories (eg. goals) that are ascribed are likely to correspond to the
programmers intentions when designing the program. Thus, the program can be
understood and changed more easily.

5. The structure of the program is more easily accessible then in the source code form.

Especially the fourth point in the above enumeration is extremely important for
AOSE because the task of understanding existing software becomes increasingly impor-
tant in the software industry and is likely to outrange the development of new software
[1]. Thus, if it becomes easier to access the original developers idea (that is eventually
manifested in the design) it becomes easier to understand the design and this leads to
higher cost efficiency in software maintenance.

A more general conclusion from McCarthy’s approach is the idea that anything can
be an agent. This view has been discussed from controversial points of view [44] and
it has been argued that it does not buy us anything whenever the system is so simple
that it can be perfectly understood. I do not agree with this. In my view, the conceptual
integrity that is achieved by viewing every intentional entity — be it a simple as it may
— in the system as an agent leads to a much clearer system design and it circumvents
the problem to decide whether a particular entity is an agent or not. In my personal
experience, this problem can be quite annoying during the design phase whenever two
software designers have different views.

In the above paragraphs, | have identified the basic structural elements of object-
orientation and agent-orientation, respectively. Now | will outline some of the basic
concepts of describing and arranging these elements and point out some fundamental
similarities that can be identified.

As | have already said above, the basic descriptional element is object-oriented pro-
gramming is the class. A class definition specifies the class variables of an object and
the methods the object accepts. Classes can be linked with each other via several forms:
one class inherit from another class such that the new class is an extension of the ex-
isting class, instances of two classes can collaborate with each other by exchanging
messages, and finally they can have a structural connection in that one instance of a
class contains an instance of the class.

These concepts correspond to the agent-oriented world by replacing class with role,
state variable with belief/lknowledge and method with message. Thus a role definition
describes the agent’s capabilities, the data that is needed to produce the desired results
and the requests that trigger a particular service. Besides this fundamental relation, there
are many other conceptual similarities between object-orientation and agent-orientation
that can be mapped onto each other. Due to the limited space, however, these are briefly
summarized in Table 1.

Turning away from the conceptual issues and similarities of the two programming
approaches, we will now come to more technical aspects of the runtime environment
and discuss the general structure for object-oriented and agent-oriented systems, re-
spectively.

2.3 Runtime System

The runtime system of a particular programming paradigm provides the environment
for the program interpretation and these environments can be radically different. In

[OOP [AOP

Structural Elements

abstract class generic role

class domain specific role
class variables knowledge, belief
methods capabilities

Relations

collaboration (uses)|negotiation
composition (has) |holonic agents

inheritance (i s) role multiplicity

instantiation domain-specific role + individual
knowledge

polymorphism service matchmaking

Table 1. Mapping OOP to AOP

the more simple forms, they are restricted to administrative tasks such as managing
the heap or they provide slightly more elaborate services such as garbage collection.
However, there also exist very complex runtime environment that provide complete
reasoning engines for logic programming [17] that are for example used in declarative
programming languages such as Prolog [5].

Objects and agents and the various relationships that exist between them within
their respective programming model are conceptual abstractions that require an imple-
mentation such that they can be used by higher levels of abstraction. In the follow-
ing paragraphs, | will divide the implementation of the theoretical concepts into the
implementation of the entities themselves and an implementation of a meta-level that
manipulates the basic entities.

In an object-oriented runtime system, the objects are statically represented by the
object architecture. This architecture is usually quite simple as it only contains the
current state of the object and the relation to the objects class (which determines the
operations that can be performed on the object). An object is usually represented as
arbitrary collection of data elements with associated functions and the granularity of
objects is potentially not limited. However, efficiency issues dictate that not every entity
is modeled as an object and so in reality this conceptual benefit is slightly weakened.
The object management system is responsible for representing the relations such as
inheritance between the defined classes and object manipulation such as creating or
destroying objects. Furthermore, the object management system is also responsible for
dynamic aspects such as method selection of polymorphous objects, exception handling
or garbage collection.

In an agent-oriented runtime system, things are distinctly more complicated al-
though similar in their general structure. The basic entities are the agents that are imple-
mented by their agent architecture. Agent architectures are often built upon a particular
theory such as BDI [35] and establish the link between the abstract concepts “agent”

and “role” in that they provide the runtime environment for the role descriptions that
make up the agent. Thus, we have the fundamental relation [21]

agent = roles + architecture

However, agent architectures are far more complex then the object architecture, es-
pecially because of the dynamic aspects that must be dealt with. Because of the richness
of the agent-oriented world, there exists a large number of different agent architectures
[27,28, 15]. Due to the vast number of approaches, it is impossible to identify the best
or most general architecture. However, the smallest common denominator seems to be
the basic perceive — reason — act cycle that is oriented at the minimal agent model of
[36]: in each iteration, the agent perceives the state of its environment, integrates the
perception in its knowledge base that is used to derive the next action which is then
executed. This generic cycle is a useful abstraction as it provides a black-box view on
the agent architecture and encapsulates specific aspects.

The task of the agent management system as the meta-level of an agent based run-
time environment is to provide a “life-space” for the agents, ie. a collection of mech-
anisms that enables the agents to get in contact with each other. To enable agents of
different designers to interact with each other, it is necessary to standardize the basic
services that are provided by agent management system. One such standard is defined
in [10].

2.4 Programming Language

On this level of abstraction, the syntactical framework for the manipulation of the en-
tities on the runtime level is defined. The programs that are written in a particular pro-
gramming language are either directly interpreted by the runtime system or they are
compiled into an intermediate format that is understood by the runtime system or di-
rectly to assembler code.

The syntactical constructs that are provided by the programming language should
allow the programmer to use the underlying semantic concepts efficiently and to express
the intended functionality of the program elegantly. For example, it is generally possible
to implement a particular conceptual model with any general purpose language, e.g. it
is possible to write object-oriented programs in C, but in general, it is much easier
and more comfortable for the programmer if the terms of the conceptual framework
can be used directly. Even an integration of several conceptual models into a single
high level programming language can be problematic as is often difficult to find a good
combination of concepts that is not overwhelming for the average user and then to find
a concise syntactical representation for these different concepts.

I think that object-orientation as well as agent-orientation are such general concepts
that can be attached to almost any other programming language. In the case of object
orientation, this approached work for languages such C, leading to C++ [38], Cobol
(ObjectCobol [9]), perl [42] and numerous other languages. But not only imperative
languages have been enhanced with objects. The Mozart programming system [34], for
example, provides a very elegant combination of constraint-logic programming with
object-oriented concepts.

In the context of agent-oriented software engineering, these trends are not so clear
until now. Currently, there is no — at least to my knowledge — widely accepted agent-
oriented programming language that goes beyond the experimental state. However,
some approaches are designed as an extension of established languages, eg. JAM
Agents [14] that combine agent-oriented concepts with Java [39].

2.5 Design Language

Design languages are further abstractions from a particular programming language that
aim at the conceptual modeling of a system at a more coarse grained level. Design
languages often use graphical notations that make it easier fro the designer to access
the overall system structure. Probably the currently best known design language is the
Unified Modeling Language (UML) [3] that tries to integrate several, until then sepa-
rated design notations, under a common hat. The UML provides a variety of structural
elements with well defined semantics that can be flexibly combined into diagrams that
capture different aspects of a software system. The core UML language can thus be used
to describe a software system from the requirements specification to the final design.
An example for using the UML within the context of agent-based systems is discussed
in [7]. Due to the general nature of the core UML, however, it is not always suited for
all problem areas, and therefore, extensions that cover special aspect have already been
proposed [11]. One way is to extend the UML by providing new structural elements and
diagrams that enhance the expressive power of the base language. This way is favored
by the OMG/FIPA in the development of AGENTUML [31] which proposes an exten-
sion of the UML with respect to agent-oriented concepts. As part of the AGENTUML
in the FIPA standard [2], [30] suggests an extension of the UML by a completely new
diagram type called protocol diagrams. These diagrams combine elements of UML in-
teraction diagrams and state diagrams to model the roles that can be played by an agent
in the course of interacting with other agents. The new diagram type allows for the
specification of multiple threads within an interaction protocol and supports protocol
nesting and protocol templates based on generic protocol descriptions.

In a more general sense, however, design languages should not necessarily be con-
straint to modeling aspects of the system. In my personal view, | would count general
software architecture frameworks or frameworks for a particular application area to de-
sign languages as well. The reason for this view is that these frameworks provide their
own set of structural abstractions that represent a “language” on this particular level of
abstraction.

In the object-oriented community, examples for such frameworks include Java
Beans [40] as a means to provide off-the-shelf components together with flexible in-
terconnection mechanisms between the basic structural elements, or software develop-
ment environments such as Visual C++ [25] that focus on a support for the development
of graphical user interfaces. In the latter case, the structural elements of the design lan-
guage are graphical elements that are combined according to a given grammar that
regulates how different elements can be put together.

In the agent-based world — although a relatively new area —, a large number of
different frameworks already exists. This may be due to the fact, that the increasing

Machine Lan-|Structured Pro-|Object-Oriented |Agent-Oriented
guage gramming Programming Programming
Structural Unit |Program Subroutine Object Agent
Relation to Previ- Bounded unit of|Subroutine Object
ous level Program + persistent local|+ indepen-
state dent thread
of execution
+ Initiative

Table 2. Historic development of programming paradigms [33]

complexity can only be dealt with by using adequate tool support. Examples for agent-
based design languages range from source-level frameworks such as SIF [37] up to
complex and powerful tools such as the ZEUS toolkit [29] from British Telecom that
provides drag-and-drop mechanisms for putting together multi-agent applications.

3 A Historic Perspective

In this section, | will discuss a few historic aspects in the development of programming
paradigms that can be helpful in understanding why the agent-oriented approach is a
natural successor to the prior development.

In [33], Table 3 is used to capture the historic development from machine language
to agent-oriented programming. In the early days of programming, a program was thus
seem as a monolithic block without any inherent structure. This view was subsequently
changed in that it was recognized that a program is made up from several smaller struc-
tural units, ie. subroutines. However, the concept of subroutines alone was not powerful
enough as it emphasized the control flow aspect of programming and neglects the data
that is involved. Consequently, the view changed a second time, this time grouping data
and computation together in a single structural unit called an “object”. Currently, we are
faced with the third change of perspective, leading away from merely passive objects
and facing towards active structural units which we call “agents”.

I like the above presentation of the historic development because | think that it cap-
tures the main ideas in a concise form. However, | am not completely satisfied with the
characterization of agents in the above table. While the requirement of an independent
thread of execution sounds very technical, the term “initiative” is to fuzzy to be opera-
tionalized. To draw on the basic ideas of [33] but to develop a more coherent structure,
I suggest the three-step characterization shown in Figure 2.

In the first step, programs are seen as a collection of functions that establish a well-
defined goal. These functions can be described as an imperative sequence of statements
(imperative programming), as a collection of mathematical expressions that are linked
together (functional programming) or as a set of goals without imposing a particular
way of achieving the goal onto the interpreter (declarative programming).

In the next development step, a program is interpreted in terms of the data that is
manipulated and the functions that operate on that data. This leads to structured pro-
gramming where semantically related aspects of the program are spatially related. An

agents

objects resources

functions data

Fig. 2. Historic development

even stronger and explicit relation between data and functions is introduced by abstract
data types, eventually leading to object-oriented programming.

In the final step of the characterization, the objects are augmented with resources
such as computation time, that can be freely used. This freedom in the (internal) re-
source allocation process lead to the concept that | find most fundamental for agent-
oriented programming: autonomy. Although the weak notion of agency has identified
autonomy as a central concept of the agent-oriented viewpoint, it was only credited as
one among others. | would argue, on the other hand, that autonomy is more fundamen-
tal then the other aspects of the the weak notion and that it is even a prerequisite for
the others. For example, pro-activeness can only be achieved when the agent is free to
decide when to become active; the same argument holds for reactivity.

The idea of agents as autonomous agents is so striking and revolutionary because it
leads to a new way of thinking about software systems. Such a system is no longer a
collection of passive objects. Rather, these objects have a “life of their own”, ie. they are
perceived and modeled by the designer as active entities. This view on complex systems
is completely different from traditional approaches in that it explicitly accepts the fact
the system designer is not responsible for specifying the systems dynamics down to the
least bit. Instead, the designer sets out the initial state and specifies the initial goals of
the autonomous agents and then the system takes over. In such a system, there is no
such thing as the “central scrutinizer” [46] that controls everything. Rather, the ongoing
interactions determine the overall system behavior [13].

Another major advantage of the agent-oriented view is that it supports the principle
of locality even better then the object-oriented view does. In object-oriented systems,
the control-flow specification is spread all over the entire program code. The agent-
oriented view introduces a further tool for conceptual grouping that comes with the
agents well defined bounds [19]. All elements that make up the control-flow of a par-
ticular agent are grouped under the common concept, making it easier to identify larger
units of the program that belong together semantically.

4 Thebottom line

After the sobering remarks about the basic similarities of the agent- and object-oriented
approaches one may be tempted to conclude that agent-orientation are just the em-
peror’s new clothes. But that is not what | was trying to say. Even if the technical
contributions or agent-oriented software engineering are not really revolutionary the
conceptual contribution is nonetheless huge. Agent-oriented software engineering pro-
vides an epistemological framework for effective communication and reasoning about
complex software system on the basis of mental qualities. It provides a consistent new
set of terms and relations that adequately capture complex systems and that support
easier and more natural development of these systems.

As an example for the importance of a clear terminological framework, consider
abstract data types (ADTSs) and objects. It is argued in [43], that objects are essentially
the same thing then ADTSs that were introduced years earlier. But: why do programmers
prefer objects over ADTs? | think because the terminological framework provided by
object-oriented approaches allows the programmer a more natural way of modeling
because it allows for thinking in terms of the real world that should be modeled by a
software system. Furthermore, | think that it will be a major reason for the success of the
agent-oriented view that programmers already use some sort of mentalistic notion to de-
velop their object-oriented systems that is subsequently translated into object-oriented
terms. This additional transformation can be dropped as soon as the adequate tools for
expressing the ideas directly in the already used terminology become available.

As a second point that | have explained above, | think that adding autonomy as an
accepted property of formerly passive objects is the main contribution of the agent-
oriented view. It leads to a completely different modeling approach that stimulates a
system design built upon the desirable properties [6] of loose coupling between system
components with a high cohesion of these components.

I shall now return to the initial question of the paper that was whether agent-oriented
software engineering is really a new programming paradigm or not. To answer this
question, consider the following quote from the Webster On-line Dictionary [24]

Main Entry: par-a-digm

Pronunciation:’ par - & "dl malso - "di m

Function: noun

Etymology: Late Latin paradigma, from Greek paradeigma, from paradeikny-
nai to show side by side

Date: 15th century

1: example, pattern; especially: an outstandingly clear or typical example or
archetype

2 : an example of a conjugation or declension showing a word in all its
inflectional forms

3 : a philosophical and theoretical framework of a scientific school or dis-
cipline within which theories, laws, and generalizations and the experiments
performed in support of them are formulated

According to this definition, the answer to the above question is clearly “yes” be-
cause agent-oriented software engineering provides us with the required new frame-

work, built upon the basic property of autonomy, that allows for the modeling and
understanding of agent-based applications. Furthermore, | think that the agent-oriented
view is a necessary prerequisite for accepting artificial intelligence at all because I think
that we must get used to ascribing basic qualities such as goal, beliefs, desires before
we can ascribe “intelligence” to a machine.

5 Wherenext?

It must be the goal for the agent community to broaden the acceptance of the new
paradigm among the people who really develop software, ie. software engineers. But
just as it was the case with object-oriented technology, | do not believe that this ac-
ceptance will develop quickly. Object-oriented technology was around for about 10-15
years before it became a widely accepted and naturally used software engineering dis-
cipline. So the question one may ask in this respect is why it takes so long for a new
paradigm to become state of the art? An interesting answer to this question is provided
in Kuhn’s theory about the Structure of Scientific Revolutions [18]. According to Kuhn’s
theory, scientific development is not a continuous flow, but rather a sequence of disjoint
revolutions. Every such a revolution is preceded by a phase of normal scientific activi-
ties in which the researches use the current state of the art (the current paradigm) as the
general background of their daily work and the research questions are draw from yet
unsolved problems of the current paradigm and can in principle be solved within the
existing framework. From time to time, however, a question is raised or a phenomenon
is observed that cannot be answered or explained within the current paradigm. These
anomalies require a radical change of perspective, ie. a new general research paradigm
that can deal with the newly observed phenomena. This is then called a revolution. lde-
ally, the new paradigm should also capture the past experiences although this is not
always possible. As an example for this sort of scientific development, consider New-
ton’s theory on mechanics. Newton’s mechanics was the research framework for several
hundred years until several observations on the atomic level could not be explained in
Newton’s theory. This lead to the development of quantum mechanics that were able
explain the observations on the atomic level.

The major point in Kuhn’s theory is, that the new research paradigm is not intro-
duced into the research by established researchers that “convert” to the new paradigm.
Rather, it is introduced by the upcoming generation of young researchers that grow up in
the spirit of the new paradigm and that they naturally accept as the general framework.
Scientific history is full of examples for this process. The above mentioned theory of
guantum mechanics is such an examples, as is Darwin’s theory on the origin of species
[8]. On a much more specific level, this observation is also true for object-oriented
software development. While some established researches neglected the novelty in the
concepts [43], it was readily accepted by the younger generation and it is now a widely
accepted programming paradigm.

In the near future of agent-oriented software engineering, however, it is necessary
to make the main contributions accessible to the people that should use it. Therefore,
we need conceptual frameworks to such as described in [16, 20, 26, 45] that support the
development of agent-oriented applications.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Helmut Balzert. Lehrbuch der Software-Technik, volume I1. Spekrum Akademischer Verlag,
1998.

Bernhard Bauer, Jorg P. Miller, and James Odell. Agent UML: A Formalism for Specifying
Multiagent Software Systems. In Proceeedings of the First International Workshop on Agent-
Oriented Software Engineering (AOSE-2000) held at the 22nd International Conference on
Software Engineering, Limerick, Ireland, 2000.

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison Wesley, 1999.

Grady Booch. Object-Oriented Analysis and Design With Applications. Addison-Wesley,
1994.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer Verlag, 1994.

S. D. Conte, H. E. Dunsmore, and V. Y. Chen. Software Engineering Metrics and Models.
The Benjamin/Cummings Publishing Company, 1996.

Ralph Depke, Reiko Heckel, and Jochen Malte Kiister. Requirement Specification and De-
sign of Agent-Based Systems with Graph Transformation, Roles, and UML. In Proceeedings
of the First International Workshop on Agent-Oriented Software Engineering (AOSE-2000)
held at the 22nd International Conference on Software Engineering, Limerick, Ireland, 2000.
Adrian Desmond and James Moore. Darwin. Rowolt, 1994.

E. Reed Doke and Bill C. Hardgrave. An Introduction to Object Cobol. John Wiley & Sons,
1998.

FIPA. Fipa ’98 specification parts 1-13, version 1.0, 1998. The Foundation for Intelligent
Physical Agents.

R. France and B. Rumpe, editors. UML99 - The Unified Modelling Language - Beyond The
Standard, number 1723 in LNCS. Springer, 1999.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann Publishers Inc., 1990.

Michael N. Huhns. Interaction-oriented programming. In Proceeedings of the First Inter-
national Workshop on Agent-Oriented Software Engineering (AOSE-2000) held at the 22nd
International Conference on Software Engineering, Limerick, Ireland, 2000.

Intelligent ~ Reasoning Systems. Jam agent architecture, 2000.
http://members.home.net/marcush/IRS/.

C. G. Jung. Theory and Pratice of Hybrid Agents. PhD thesis, Universitat des Saarlandes,
1999.

Elizabeth A. Kendall. Agent software engineering with role modelling. In Proceeedings
of the First International Workshop on Agent-Oriented Software Engineering (AOSE-2000)
held at the 22nd International Conference on Software Engineering, Limerick, Ireland, 2000.
Robert Kowalski. Logic for Problem Solving. North Holland, Amsterdam, 1979.

Thomas S Kuhn. The structure of scientific revolutions. Univ. of Chicago Press, 2nd edition,
1975.

Susan E. Lander. Issues in Multiagent Design Systems. IEEE Expert, April 1997.

Jirgen Lind. The MASsIVE development method for multiagent systems. In Proceedings
of the Fifth International Conference on the Practical Application of Intelligent Agents and
Multi-Agents, Manchester, UK, 2000.

Jirgen Lind. MAssIVE: Software Engineering for Multiagent Systems. PhD thesis, Univer-
sity of the Saarland, 2000.

John McCarthy. Ascribing mental qualities to machines. In Martin Ringle, editor, Philo-
sophical Aspects in Artificial Intelligence. Harvester Press, 1979.

23.
24,

26.

27.

28.

29.

30.

31.
32.
33.
34.

35.

36.

37.

38.
39.
40.
41.
42.

43.
. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge

45,

46.

Scott McNealy. Scott says... kick butt and have fun”. Sun Microsystems, 1996.
http://www.sun.com/960601/cover/.

Merriam-Webster. Wwwebster dictionary, 2000. http://www.m-w.com.

Microsoft Corporation. Visual c++, 2000. http://msdn.microsoft.com/visualc/.

Simon Miles, Mike Joy, and Michael Luck. Designing agent-oriented systems by analysing
agent interactions. In Proceeedings of the First International Workshop on Agent-Oriented
Software Engineering (AOSE-2000) held at the 22nd International Conference on Software
Engineering, Limerick, Ireland, 2000.

J. P. Miiller. Control Architectures for Autonomous and Interactin Agents: A Survey. In
L. Cavedon, Anand Rao, and Wayne Wobcke, editors, Intelligent Agent Systems: Theoratical
and Practical Issues, number 1209 in LNAI, 1996.

Jorg P. Miiller. The Right Agent (Architecture) to do the Right Thing. In Intelligent Agents
V — Proc. of the ATAL-98, volume 1555 of LNAI, 1998.

Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C. Collins. ZEUS: A
tool-kit for building distributed multi-agent systems. Applied Artifical Intelligence Journal,
13(1):129-186, 1999.

James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing agent interaction
protocols in uml. In Proceeedings of the First International Workshop on Agent-Oriented
Software Engineering (AOSE-2000) held at the 22nd International Conference on Software
Engineering, Limerick, Ireland, 2000.

OMG and FIPA. Agent working group. http://ww. objs.contisig/wg-
agent s06- m nut es. ht m ,1999.

Tom Ormerod. Human cognition and programming. In Psychology of Programming. Aca-
demic Press Ltd., London, 1990.

H. V. Parunak. Blue-Collar Agents: Keynote of the PAAM99 conference.
http://www.erim.org/~van/Presentations, April 1999.

Programming Systems Lab. The mozart programming system. University of the Saarland,
1999. http://www.mozart-0z.org.

A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceedings of the
First International Conference on Multi-Agent Systems (ICMAS-95), pages 312-319, San
Francisco, CA, June 1995.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

M. Schillo, J. Lind, P. Funk, C. Gerber, and C. Jung. SIF - The Social Interaction Framework
System Description and User’s Guide to a Multi-Agent System Testbed. Technical Report
TR-99-02, DFKI GmbH, 1999.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Massachusetts,
1987.

Sun Microsystems. The Java Programming System, 1999. http://java.sun.com.

Sun Microsystems. Java Beans, 2000. http://java.sun.com/beans.

Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, 2(42), 1937.

Larry Wall, Randal L. Schwartz, and Tom Christiansen. Programming Perl. O’Reilly &
Associates Inc., 2nd edition, 1996.

N. Wirth. A plea for lean software. IEEE Computer, 28(2):64-68, 1995.

Engineering Review, 10(2):115-152, 1995.

M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 2000. to
appear.

Frank Zappa. Joe’s garage. Munchkin Music, 1979.

