
Above the Clouds: A View of Cloud Computing

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia

UC Berkeley Reliable Adaptive Distributed systems Laboratory (RAD Lab)

Cloud Computing, the long-held dream of computing as a util-
ity, has the potential to transform a large part of the IT indus-
try, making software even more attractive as a service and shap-
ing the way IT hardware is designed and purchased. Develop-
ers with innovative ideas for new Internet services no longer re-
quire the large capital outlays in hardware to deploy their ser-
vice or the human expense to operate it. They need not be con-
cerned about over-provisioning for a service whose popularity
does not meet their predictions, thus wasting costly resources,
or under-provisioning for one that becomes wildly popular, thus
missing potential customers and revenue. Moreover, companies
with large batch-oriented tasks can get results as quickly as their
programs can scale, since using 1000 servers for one hour costs
no more than using one server for 1000 hours. This elasticity of
resources, without paying a premium for large scale, is unprece-
dented in the history of IT.

As a result, Cloud Computing is a popular topic for blogging
and white papers and been featured in the title of workshops, con-
ferences, and even magazines. Nevertheless, confusion remains
about exactly what it is and when it’s useful, causing Oracle’s
CEO Larry Ellison to vent his frustration:

The interesting thing about Cloud Computing is that
we’ve redefined Cloud Computing to include every-
thing that we already do. . . . I don’t understand what
we would do differently in the light of Cloud Comput-
ing other than change the wording of some of our ads.

Our goal in this paper to reduce that confusion by clarifying
terms, providing simple figures to quantify comparisons between
of cloud and conventional Computing, and identifying the top
technical and non-technical obstacles and opportunities of Cloud
Computing. (A more detailed version of this paper is [4].)

1 Defining Cloud Computing
Cloud Computing refers to both the applications delivered as ser-
vices over the Internet and the hardware and systems software
in the datacenters that provide those services. The services them-
selves have long been referred to as Software as a Service (SaaS).
The datacenter hardware and software is what we will call a
Cloud. When a Cloud is made available in a pay-as-you-go man-
ner to the general public, we call it a Public Cloud; the service
being sold is Utility Computing. We use the term Private Cloud
to refer to internal datacenters of a business or other organization,
not made available to the general public. Thus, Cloud Computing
is the sum of SaaS and Utility Computing, but does not include

Figure 1: Users and Providers of Cloud Computing. We fo-
cus on Cloud Computing’s effects on Cloud Providers and SaaS
Providers/Cloud users. The top level can be recursive, in that
SaaS providers can also be a SaaS users via mashups.

Private Clouds. People can be users or providers of SaaS, or users
or providers of Utility Computing. We focus on SaaS Providers
(Cloud Users) and Cloud Providers, which have received less at-
tention than SaaS Users. Figure 1 makes provider-user relation-
ships clear.

From a hardware point of view, three aspects are new in Cloud
Computing.

1. The illusion of infinite computing resources available on de-
mand, thereby eliminating the need for Cloud Computing
users to plan far ahead for provisioning.

2. The elimination of an up-front commitment by Cloud users,
thereby allowing companies to start small and increase hard-
ware resources only when there is an increase in their needs.

3. The ability to pay for use of computing resources on a short-
term basis as needed (e.g., processors by the hour and stor-
age by the day) and release them as needed, thereby reward-
ing conservation by letting machines and storage go when
they are no longer useful.

We argue that the construction and operation of extremely
large-scale, commodity-computer datacenters at low-cost loca-
tions was the key necessary enabler of Cloud Computing, for they
uncovered the factors of 5 to 7 decrease in cost of electricity, net-
work bandwidth, operations, software, and hardware available at
these very large economies of scale. These factors, combined
with statistical multiplexing to increase utilization compared a
private cloud, meant that cloud computing could offer services
below the costs of a medium-sized datacenter and yet still make

1

Table 1: Comparing Public Clouds and Private Clouds.

Advantage Public Cloud Private Cloud
Illusion of infinite computing resources available on demand Yes No
Elimination of an up-front commitment by Cloud users Yes No
Ability to pay for use of computing resources on a short-term basis as needed Yes No
Economies of scale due to very large datacenters Yes No
Higher utilization by multiplexing of workloads from different organizations Yes Depends on company size
Simplify operation and increase utilization via resource virtualization Yes Yes

a good profit.
Omitting Private Clouds from Cloud Computing has led to

considerable debate in the blogosphere. We believe the confusion
and skepticism illustrated by Larry Ellison’s quote occurs when
the advantages of Public Clouds are also claimed for medium-
sized Private Clouds. Except for extremely large Private Clouds
of hundreds of thousands of machines, such as those operated by
Google or Microsoft, Private Clouds enjoy only a subset of the
potential advantages of Public Clouds, as shown in Table 1. We
therefore believe that including Private Clouds in the definition
of Cloud Computing will lead to exaggerated claims for Private
Clouds, which is why we exclude them. However, below we de-
scribe how Private Clouds can get more of the benefits of Private
Clouds through Surge Computing or Hybrid Cloud Computing.

2 Classes of Utility Computing

Any application needs a model of computation, a model of stor-
age, and a model of communication. The statistical multiplexing
necessary to achieve elasticity and the illusion of infinite capacity
requires each of these resources to be virtualized to hide the im-
plementation of how they are multiplexed and shared. Our view
is that different utility computing offerings will be distinguished
based on the programmer’s level of abstraction and the level of
management of the resources.

Amazon EC2 is at one end of the spectrum. An EC2 in-
stance looks much like physical hardware, and users can control
nearly the entire software stack, from the kernel upwards. This
low level makes it inherently difficult for Amazon to offer auto-
matic scalability and failover, because the semantics associated
with replication and other state management issues are highly
application-dependent. At the other extreme of the spectrum
are application domain-specific platforms such as Google App-
Engine. AppEngine is targeted exclusively at traditional web ap-
plications, enforcing an application structure of clean separation
between a stateless computation tier and a stateful storage tier.
AppEngine’s impressive automatic scaling and high-availability
mechanisms, and the proprietary MegaStore data storage avail-
able to AppEngine applications, all rely on these constraints.
Applications for Microsoft’s Azure are written using the .NET
libraries, and compiled to the Common Language Runtime, a
language-independent managed environment. Thus, Azure is in-
termediate between application frameworks like AppEngine and
hardware virtual machines like EC2.

(a) Provisioning for peak load

(b) Underprovisioning 1

(c) Underprovisioning 2

Figure 2: (a) Even if peak load can be correctly anticipated, with-
out elasticity we waste resources (shaded area) during nonpeak
times. (b) Underprovisioning case 1: potential revenue from
users not served (shaded area) is sacrificed. (c) Underprovision-
ing case 2: some users desert the site permanently after expe-
riencing poor service; this attrition and possible negative press
result in a permanent loss of a portion of the revenue stream.

2

3 Cloud Computing Economics
We see three particularly compelling use cases that favor Utility
Computing over Private Clouds. A first case is when demand for
a service varies with time. Provisioning a data center for the peak
load it must sustain a few days per month leads to underutiliza-
tion at other times, for example. Instead, Cloud Computing lets
an organization pay by the hour for computing resources, poten-
tially leading to cost savings even if the hourly rate to rent a ma-
chine from a cloud provider is higher than the rate to own one. A
second case is when demand is unknown in advance. For exam-
ple, a web startup will need to support a spike in demand when it
becomes popular, followed potentially by a reduction once some
visitors turn away. Finally, organizations that perform batch ana-
lytics can use the “cost associativity” of cloud computing to finish
computations faster: using 1000 EC2 machines for 1 hour costs
the same as using 1 machine for 1000 hours.

Although the economic appeal of Cloud Computing is often
described as “converting capital expenses to operating expenses”
(CapEx to OpEx), we believe the phrase “pay as you go” more
directly captures the economic benefit to the buyer. Hours pur-
chased via Cloud Computing can be distributed non-uniformly in
time (e.g., use 100 server-hours today and no server-hours tomor-
row, and still pay only for 100); in the networking community,
this way of selling bandwidth is already known as usage-based
pricing. 1 In addition, the absence of up-front capital expense
allows capital to be redirected to core business investment.

Therefore, even if Amazon’s pay-as-you-go pricing was more
expensive than buying and depreciating a comparable server over
the same period, we argue that the cost is outweighed by the ex-
tremely important Cloud Computing economic benefits of elas-
ticity and transference of risk, especially the risks of overprovi-
sioning (underutilization) and underprovisioning (saturation).

We start with elasticity. The key observation is that Cloud
Computing’s ability to add or remove resources at a fine grain
(one server at a time with EC2) and with a lead time of min-
utes rather than weeks allows matching resources to workload
much more closely. Real world estimates of server utilization
in datacenters range from 5% to 20% [12, 13]. This may sound
shockingly low, but it is consistent with the observation that for
many services the peak workload exceeds the average by factors
of 2 to 10. Since few users deliberately provision for less than
the expected peak, resources are idle at nonpeak times. The more
pronounced the variation, the more the waste.

For example, Figure 2(a) assumes our service has a predictable
demand where the peak requires 500 servers at noon but the
trough requires only 100 servers at midnight. As long as the av-
erage utilization over a whole day is 300 servers, the actual cost
per day (shaded area under the curve) is 300× 24 = 7200 server-
hours; but since we must provision to the peak of 500 servers,
we pay for 500× 24 = 12000 server-hours, a factor of 1.7 more.
Therefore, as long as the pay-as-you-go cost per server-hour over
3 years (typical amoritization time) is less than 1.7 times the cost
of buying the server, utility computing is cheaper.

1Usage-based pricing is not renting. Renting a resource involves paying a
negotiated cost to have the resource over some time period, whether or not you
use the resource. Pay-as-you-go involves metering usage and charging based on
actual use, independently of the time period over which the usage occurs.

In fact, the above example underestimates the benefits of elas-
ticity, because in addition to simple diurnal patterns, most ser-
vices also experience seasonal or other periodic demand variation
(e.g., e-commerce in December and photo sharing sites after hol-
idays) as well as some unexpected demand bursts due to external
events (e.g., news events). Since it can take weeks to acquire and
rack new equipment, to handle such spikes you must provision
for them in advance. We already saw that even if service oper-
ators predict the spike sizes correctly, capacity is wasted, and if
they overestimate the spike they provision for, it’s even worse.

They may also underestimate the spike (Figure 2(b)), however,
accidentally turning away excess users. While the cost of over-
provisioning is easily measured, the cost of underprovisioning is
harder to measure yet potentially equally serious: not only do re-
jected users generate zero revenue, they may never come back.
Figure 2(c) aims to capture this behavior: users will desert an
underprovisioned service until the peak user load equals the dat-
acenter’s usable capacity, at which point users again receive ac-
ceptable service, but with fewer potential users.

For example, suppose but 10% of users who receive poor ser-
vice due to underprovisioning are “permanently lost” opportuni-
ties, i.e. users who would have remained regular visitors with
a better experience. The site is initially provisioned to handle
an expected peak of 400,000 users (1000 users per server × 400
servers), but unexpected positive press drives 500,000 users in
the first hour. Of the 100,000 who are turned away or receive
bad service, by our assumption 10,000 of them are permanently
lost, leaving an active user base of 390,000. The next hour sees
250,000 new unique users. The first 10,000 do fine, but the site
is still over capacity by 240,000 users. This results in 24,000
additional defections, leaving 376,000 permanent users. If this
pattern continues, after lg 500000 or 19 hours, the number of
new users will approach zero and the site will be at capacity in
steady state. Clearly, the service operator has collected less than
400,000 users’ worth of steady revenue during those 19 hours,
however, again illustrating the underutilization argument —to
say nothing of the bad reputation from the disgruntled users.

Do such scenarios really occur in practice? When Animoto [2]
made its service available via Facebook, it experienced a demand
surge that resulted in growing from 50 servers to 3500 servers in
three days. Even if the average utilization of each server was low,
no one could have foreseen that resource needs would suddenly
double every 12 hours for 3 days. After the peak subsided, traffic
fell to a lower level. So in this real world example, scale-up elas-
ticity was not a cost optimization but an operational requirement,
and scale-down elasticity allowed the steady-state expenditure to
more closely match the steady-state workload.

4 Top 10 Obstacles and Opportunities
for Cloud Computing

Table 2 summarizes our ranked list of critical obstacles to growth
of Cloud Computing. The first three concern adoption, the next
five affect growth, and the last two are policy and business obsta-
cles. Each obstacle is paired with an opportunity to overcome that
obstacle, ranging from product development to research projects.

3

Table 2: Top 10 Obstacles to and Opportunities for Growth of Cloud Computing.
Obstacle Opportunity

1 Availability/Business Continuity Use Multiple Cloud Providers
2 Data Lock-In Standardize APIs; Compatible SW to enable Surge or Hybird Cloud Computing
3 Data Confidentiality and Auditability Deploy Encryption, VLANs, Firewalls
4 Data Transfer Bottlenecks FedExing Disks; Higher BW Switches
5 Performance Unpredictability Improved VM Support; Flash Memory; Gang Schedule VMs
6 Scalable Storage Invent Scalable Store
7 Bugs in Large Distributed Systems Invent Debugger that relies on Distributed VMs
8 Scaling Quickly Invent Auto-Scaler that relies on ML; Snapshots for Conservation
9 Reputation Fate Sharing Offer reputation-guarding services like those for email
10 Software Licensing Pay-for-use licenses

Number 1 Obstacle: Business Continuity and Ser-
vice Availability
Organizations worry about whether Utility Computing services
will have adequate availability, and this makes some wary of
Cloud Computing. Ironically, existing SaaS products have set a
high standard in this regard. Google Search is effectively the dial
tone of the Internet: if people went to Google for search and it
wasn’t available, they would think the Internet was down. Users
expect similar availability from new services, which is hard to do.
Table 3 shows recorded outages for Amazon Simple Storage Ser-
vice (S3), AppEngine and Gmail in 2008, and explanations for
the outages. Note that despite the negative publicity due to these
outages, few enterprise IT infrastructures are as good. Technical
issues of availability aside, a cloud provider could suffer outages
for nontechnical reasons, including going out of business or be-
ing the target of regulatory action (a recent example of the latter
occurred early this year, as we describe in section 4).

Just as large Internet service providers use multiple network
providers so that failure by a single company will not take them
off the air, we believe the only plausible solution to very high
availability is multiple Cloud Computing providers. The high-
availability computing community has long followed the mantra
“no single source of failure,” yet the management of a Cloud
Computing service by a single company is in fact a single point
of failure. Even if the company has multiple datacenters in dif-
ferent geographic regions using different network providers, it
may have common software infrastructure and accounting sys-
tems, or the company may even go out of business. Large cus-
tomers will be reluctant to migrate to Cloud Computing without
a business-continuity strategy for such situations. We believe the
best chance for independent software stacks is for them to be
provided by different companies, as it has been difficult for one
company to justify creating and maintain two stacks in the name
of software dependability.

Number 2: Data Lock-In
Software stacks have improved interoperability among platforms,
but the storage API’s for Cloud Computing are still essentially
proprietary, or at least have not been the subject of active stan-
dardization. Thus, customers cannot easily extract their data and
programs from one site to run on another. Concern about the

difficult of extracting data from the cloud is preventing some or-
ganizations from adopting Cloud Computing. Customer lock-in
may be attractive to Cloud Computing providers, but their users
are vulnerable to price increases, to reliability problems, or even
to providers going out of business.

For example, an online storage service called The Linkup shut
down on August 8, 2008 after losing access as much as 45% of
customer data [5]. The Linkup, in turn, had relied on the online
storage service Nirvanix to store customer data, and now there is
finger pointing between the two organizations as to why customer
data was lost. Meanwhile, The Linkup’s 20,000 users were told
the service was no longer available and were urged to try out
another storage site.

The obvious solution is to standardize the APIs so that a SaaS
developer could deploy services and data across multiple Cloud
Computing providers so that the failure of a single company
would not take all copies of customer data with it. The obvi-
ous fear is that this would lead to a “race-to-the-bottom” of cloud
pricing and flatten the profits of Cloud Computing providers. We
offer two arguments to allay this fear.

First, the quality of a service matters as well as the price, so
customers may not jump to the lowest cost service. Some Inter-
net Service Providers today cost a factor of ten more than others
because they are more dependable and offer extra services to im-
prove usability.

Second, in addition to mitigating data lock-in concerns, stan-
dardization of APIs enables a new usage model in which the same
software infrastructure can be used in a Private Cloud and in a
Public Cloud. Such an option could enable Surge Computing or
or Hybrid Cloud Computing in which the public Cloud is used to
capture the extra tasks that cannot be easily run in the datacenter
(or private cloud) due to temporarily heavy workloads. This op-
tion could significantly expand the Cloud Computing market. In-
deed, open-source reimplementations of proprietary cloud API’s,
such as Eucalyptus and HyperTable, are first steps in enabling
surge computing.

Number 3: Data Confidentiality/Auditability
Security is one of the most often-cited objections to cloud com-
puting; analysts and skeptical companies ask “who would trust
their essential data ‘out there’ somewhere?” There are also re-
quirements for auditability, in the sense of Sarbanes-Oxley and

4

Table 3: Outages in AWS, AppEngine, and Gmail
Service and Outage Duration Date
S3 outage: authentication service overload leading to unavailability [14] 2 hours 2/15/08
S3 outage: Single bit error leading to gossip protocol blowup. [15] 6-8 hours 7/20/08
AppEngine partial outage: programming error [16] 5 hours 6/17/08
Gmail: site unavailable due to outage in contacts system [9] 1.5 hours 8/11/08

Health and Human Services Health Insurance Portability and Ac-
countability Act (HIPAA) regulations that must be provided for
corporate data to be moved to the cloud.

The security issues involved in protecting clouds from outside
threats are similar to those already facing large datacenters, ex-
cept that responsibility is divided among potentially many par-
ties, including the cloud user, the cloud vendor, and any third-
party vendors whose value-added services have been bundled
into the cloud offering. For example, RightScale offers a value-
added service for automatic scaling on Amazon EC2.

The cloud user is responsible for application-level security.
The cloud provider is responsible for physical security, and likely
for enforcing external firewall policies. Security for intermediate
layers of the software stack is a shared between the user and the
operator; the lower the level of abstraction exposed to the user,
the more responsibility goes with it. Amazon EC2 users have
more technical responsibility (i.e. must implement or procure
more of the necessary functionality themselves) for their security
than do Azure users, who in turn have more responsibilities than
AppEngine customers. This user responsibility, in turn, can be
outsourced to third parties who sell specialty security services.
The homogeneity and standardized interfaces of platforms like
EC2 makes it possible for a company to offer, say, configuration
management or firewall rule analysis as value-added services.

While cloud computing may make external-facing security
easier, it does pose the new problem of internal-facing security.
Cloud providers need to guard against theft or denial of service
attacks by users. Users need to be protected against one another.

The primary security mechanism in today’s clouds is virtual-
ization. This is a powerful defense, and protects against most
attempts by users to attack one another or the underlying cloud
infrastructure. However, not all resources are virtualized and not
all virtualizion environments are bug-free. Virtualization soft-
ware has been known to contain bugs that allow virtualized code
to ”break loose” to some extent. Incorrect network virtualization
may allow user code access to sensitive portions of the provider’s
infrastructure, or to the resources of other users. These chal-
lenges, though, are similar to those involved in mangaging large
non-cloud datacenters, where different applications need to be
protected from one another. Any large internet service will need
to ensure that a single security hole doesn’t compromise every-
thing else.

One last security concern is protecting the cloud user against
the provider. The provider will by definition control the ”bot-
tom layer” of the software stack, which effectively circumvents
most known security techniques. We expect that users will use
contracts and courts, rather than clever security engineering, to
guard against provider malfeasance. The one important excep-
tion is the risk of inadvertent data loss. It’s hard to imagine Ama-

zon spying on the contents of virtual machine memory; it’s easy
to imagine a hard disk being disposed of without being wiped, or
a permissions bug making data visible improperly.

There’s an obvious defense, namely user-level encryption of
storage. This is already common for high-value data outside the
cloud, and both tools and expertise are readily available. this
approach was successfully used by TC3, a healthcare company
with access to sensitive patient records and healthcare claims,
when moving their HIPAA-compliant application to AWS [1].

Similarly, auditability could be added as an additional layer
beyond the reach of the virtualized guest OS, providing facili-
ties arguably more secure than those built into the applications
themselves and centralizing the software responsibilities related
to confidentiality and auditability into a single logical layer. Such
a new feature reinforces the Cloud Computing perspective of
changing our focus from specific hardware to the virtualized ca-
pabilities being provided.

Number 4: Data Transfer Bottlenecks
Applications continue to become more data-intensive. If we as-
sume applications may be “pulled apart” across the boundaries
of clouds, this may complicate data placement and transport. At
$100 to $150 per terabyte transferred, these costs can quickly
add up, making data transfer costs an important issue. Cloud
users and cloud providers have to think about the implications of
placement and traffic at every level of the system if they want to
minimize costs. This kind of reasoning can be seen in Amazon’s
development of their new Cloudfront service.

One opportunity to overcome the high cost of Internet transfers
is to ship disks. Jim Gray found that the cheapest way to send a
lot of data is to ship disks or even whole computers [8].

To quantify the argument, assume that we want to ship 10 TB
from U.C. Berkeley to Amazon in Seattle, Washington. Garfinkel
measured bandwidth to S3 from three sites and found an average
write bandwidth of 5 to 18 Mbits/second. [7] Suppose we get
20 Mbit/sec over a WAN link. It would take
10 ∗ 1012 Bytes / (20× 106 bits/second) = (8× 1013)/(2× 107)
seconds = 4,000,000 seconds,
which is more than 45 days. If we instead sent ten 1 TB disks via
overnight shipping, it would take less than a day to transfer 10
TB, yielding an effective bandwidth of about 1500 Mbit/sec. A
new commercial service offers this approach for AWS. [3]

Number 5: Performance Unpredictability
Our experience is that multiple Virtual Machines can share CPUs
and main memory surprisingly well in Cloud Computing, but that
I/O sharing is more problematic. We measured 75 EC2 instances

5

running the STREAM memory benchmark [11]. The mean band-
width is 1355 MBytes per second, with a standard deviation of
just 52 MBytes/sec, less than 4% of the mean. We also measured
the average disk bandwidth for 75 EC2 instances each writing
1 GB files to local disk. The mean disk write bandwidth is nearly
55 MBytes per second with a standard deviation of a little over 9
MBytes/sec, more than 16% of the mean. This demonstrates the
problem of I/O interference between virtual machines.

One opportunity is to improve architectures and operating sys-
tems to efficiently virtualize interrupts and I/O channels. Note
that IBM mainframes and operating systems largely overcame
these problems in the 1980s, so we have successful examples
from which to learn.

Another possibility is that flash memory will decrease I/O in-
terference. Flash is semiconductor memory that preserves infor-
mation when powered off like mechanical hard disks, but since
it has no moving parts, it is much faster to access (microseconds
vs. milliseconds) and uses less energy. Flash memory can sustain
many more I/Os per second per gigabyte of storage than disks, so
multiple virtual machines with conflicting random I/O workloads
could coexist better on the same physical computer without the
interference we see with mechanical disks.

Another unpredictability obstacle concerns the scheduling of
virtual machines for some classes of batch processing programs,
specifically for high performance computing. Given that high-
performance computing is used to justify Government purchases
of $100M supercomputer centers with 10,000 to 1,000,000 pro-
cessors, there certainly are many tasks with parallelism that can
benefit from elastic computing. Cost associativity means that
there is no cost penalty for using 20 times as much computing for
1/20th the time. Potential applications that could benefit include
those with very high potential financial returns—financial anal-
ysis, petroleum exploration, movie animation—and could easily
justify paying a modest premium for a 20x speedup.

The obstacle to attracting HPC is not the use of clusters;
most parallel computing today is done in large clusters using the
message-passing interface MPI. The problem is that many HPC
applications need to ensure that all the threads of a program are
running simultaneously, and today’s virtual machines and operat-
ing systems do not provide a programmer-visible way to ensure
this. Thus, the opportunity to overcome this obstacle is to of-
fer something like “gang scheduling” for Cloud Computing. As
these applications exchange data more frequently, they may also
need higher bandwidth switches than are deployed today.

Number 6: Scalable Storage
Early in this paper, we identified three properties whose combina-
tion gives Cloud Computing its appeal: short-term usage (which
implies scaling down as well as up when demand drops), no up-
front cost, and infinite capacity on-demand. While it’s straight-
forward what this means when applied to computation, it’s less
obvious how to apply it to persistent storage.

There have been many attempts to answer this question, vary-
ing in the richness of the query and storage API’s, the perfor-
mance guarantees offered, and the complexity of data structures
that are directly supported by the storage system (e.g., schema-
less blobs vs. column-oriented storage). The opportunity, which

is still an open research problem, is to create a storage system
would not only meet these needs but combine them with the
cloud advantages of scaling arbitrarily up and down on-demand,
as well as meeting programmer expectations in regard to resource
management for scalability, data durability, and high availability.

Number 7: Bugs in Large-Scale Distributed Sys-
tems

One of the difficult challenges in Cloud Computing is removing
errors in these very large scale distributed systems. A common
occurrence is that these bugs cannot be reproduced in smaller
configurations, so the debugging must occur at scale in the pro-
duction datacenters.

One opportunity may be the reliance on virtual machines in
Cloud Computing. Many traditional SaaS providers developed
their infrastructure without using VMs, either because they pre-
ceded the recent popularity of VMs or because they felt they
could not afford the performance hit of VMs. Since VMs are
de rigueur in Utility Computing, that level of virtualization may
make it possible to capture valuable information in ways that are
implausible without VMs.

Number 8: Scaling Quickly

Pay-as-you-go certainly applies to storage and to network band-
width, both of which count bytes used. Computation is slightly
different, depending on the virtualization level. Google App-
Engine automatically scales in response to load increases and de-
creases, and users are charged by the cycles used. AWS charges
by the hour for the number of instances you occupy, even if your
machine is idle.

The opportunity is then to automatically scale quickly up and
down in response to load in order to save money, but without vi-
olating service level agreements. Indeed, one RAD Lab focus is
the pervasive and aggressive use of statistical machine learning
as a diagnostic and predictive tool to allow dynamic scaling, au-
tomatic reaction to performance and correctness problems, and
automatically managing many other aspects of these systems.

Another reason for scaling is to conserve resources as well
as money. Since an idle computer uses about two-thirds of the
power of a busy computer, careful use of resources could reduce
the impact of datacenters on the environment, which is currently
receiving a great deal of negative attention. Cloud Computing
providers already perform careful and low overhead accounting
of resource consumption. By imposing per-hour and per-byte
costs, utility computing encourages programmers to pay attention
to efficiency (i.e., releasing and acquiring resources only when
necessary), and allows more direct measurement of operational
and development inefficiencies.

Being aware of costs is the first step to conservation, but
configuration hassles make it tempting to leave machines idle
overnight so that startup time is zero when developers return to
work the next day. A fast and easy-to-use snapshot/restart tool
might further encourage conservation of computing resources.

6

Number 9: Reputation Fate Sharing
Reputations do not virtualize well. One customer’s bad behavior
can affect the reputation of the cloud as a whole. For instance,
blacklisting of EC2 IP addresses [10] by spam-prevention ser-
vices may limit which applications can be effectively hosted. An
opportunity would be to create reputation-guarding services sim-
ilar to the “trusted email” services currently offered (for a fee) to
services hosted on smaller ISP’s, which experience a microcosm
of this problem.

Another legal issue is the question of transfer of legal
liability—Cloud Computing providers would want customers to
be liable and not them (i.e., the company sending the spam should
be held liable, not Amazon). In March 2009, the FBI raided a
Dallas datacenter because a company whose services were hosted
there was being investigated for possible criminal activity, but a
number of “innocent bystander” companies hosted in the same
facility suffered days of unexpected downtime, and some went
out of business [6].

Number 10 Obstacle: Software Licensing
Current software licenses commonly restrict the computers on
which the software can run. Users pay for the software and then
pay an annual maintenance fee. Indeed, SAP announced that it
would increase its annual maintenance fee to at least 22% of the
purchase price of the software, which is close to Oracle’s pricing
[13]. Hence, many cloud computing providers originally relied
on open source software in part because the licensing model for
commercial software is not a good match to Utility Computing.

The primary opportunity is either for open source to remain
popular or simply for commercial software companies to change
their licensing structure to better fit Cloud Computing. For ex-
ample, Microsoft and Amazon now offer pay-as-you-go software
licensing for Windows Server and Windows SQL Server on EC2.
An EC2 instance running Microsoft Windows costs $0.15 per
hour instead of $0.10 per hour for the open source version. IBM
also announced pay-as-you-go pricing for hosted IBM software
in conjunction with EC2, at prices ranging from $0.38 per hour
for DB2 Express to $6.39 per hour for IBM WebSphere with Lo-
tus Web Content Management Server.

5 Conclusions and Implications
We predict Cloud Computing will grow, so developers should
take it into account. Regardless whether a cloud provider sells
services at a low level of abstraction like EC2 or a higher level
like AppEngine, we believe that computing, storage and net-
working must all focus on horizontal scalability of virtualized
resources rather than on single node performance. Moreover:

1. Applications Software needs to both scale down rapidly as
well as scale up, which is a new requirement. Such software
also needs a pay-for-use licensing model to match needs of
Cloud Computing.

2. Infrastructure Software needs to be aware that it is no longer
running on bare metal but on VMs. Moreover, billing needs
to built in from the start.

3. Hardware Systems should be designed at the scale of a con-
tainer (at least a dozen racks), which will be is the minimum
purchase size. Cost of operation will match performance
and cost of purchase in importance, rewarding energy pro-
portionality such as by putting idle portions of the memory,
disk, and network into low power mode. Processors should
work well with VMs and flash memory should be added to
the memory hierarchy, and LAN switches and WAN routers
must improve in bandwidth and cost.

References
[1] TC3 Health Case Study: Amazon Web Services [online].

Available from: http://aws.amazon.com/solutions/
case-studies/tc3-health/.

[2] Amazon.com CEO Jeff Bezos on Animoto [online]. April 2008.
Available from: http://blog.animoto.com/2008/04/
21/amazon-ceo-jeff-bezos-on-animoto/.

[3] Large data set transfer to the cloud [online]. April
2009. Available from: http://freedomoss.com/
clouddataingestion.

[4] ARMBRUST, M., AND ET AL. Above the clouds: A berkeley view
of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS De-
partment, U.C. Berkeley, Feb 2009.

[5] BRODKIN, J. Loss of customer data spurs closure of online storage
service ’The Linkup’. Network World (August 2008).

[6] FINK, J. FBI agents raid dallas computer business [online].
April 2009. Available from: http://cbs11tv.com/local/
Core.IP.Networks.2.974706.html.

[7] GARFINKEL, S. An Evaluation of Amazon’s Grid Computing Ser-
vices: EC2, S3 and SQS . Tech. Rep. TR-08-07, Harvard Univer-
sity, August 2007.

[8] GRAY, J., AND PATTERSON, D. A conversation with Jim Gray.
ACM Queue 1, 4 (2003), 8–17.

[9] JACKSON, T. We feel your pain, and we’re
sorry [online]. August 2008. Available from:
http://gmailblog.blogspot.com/2008/08/
we-feel-your-pain-and-were-sorry.html.

[10] KREBS, B. Amazon: Hey Spammers, Get Off My Cloud! Wash-
ington Post (July 2008).

[11] MCCALPIN, J. Memory bandwidth and machine balance in cur-
rent high performance computers. IEEE Technical Committee on
Computer Architecture Newsletter (1995), 19–25.

[12] RANGAN, K. The Cloud Wars: $100+ billion at stake. Tech. rep.,
Merrill Lynch, May 2008.

[13] SIEGELE, L. Let It Rise: A Special Report on Corporate IT. The
Economist (October 2008).

[14] STERN, A. Update From Amazon Regarding Friday’s
S3 Downtime. CenterNetworks (February 2008). Avail-
able from: http://www.centernetworks.com/
amazon-s3-downtime-update.

[15] THE AMAZON S3 TEAM. Amazon S3 Availability Event: July 20,
2008 [online]. July 2008. Available from: http://status.
aws.amazon.com/s3-20080720.html.

[16] WILSON, S. AppEngine Outage. CIO Weblog (June 2008). Avail-
able from: http://www.cio-weblog.com/50226711/
appengine\ outage.php.

7

