
1

Agent-Oriented
Software Engineering

Federico Bergenti
Onn Shehory

Franco Zambonelli
EASSS 2002 Agent-Oriented Software

Engineering
2

Goal of the Lecture

n Understand and discuss:
– What Agent-Oriented Software Engineering

(AOSE) is and why it is important;

– Key concepts.

n Overview:
– Relevant AOSE methodologies;

– AOSE implementation tools.

n Suggest interesting research directions.

EASSS 2002 Agent-Oriented Software
Engineering

3

Outline of the Lecture

n Part 1 (≅2 hours): Key Concepts
– Agents and multiagent systems from a software

engineering perspective.

n Part 2 (≅2 hours): Methodologies
– Overview and evaluation of 4 representative

methodologies.

n Part 3 (≅1 hour): Implementation
– Discuss approaches for implementing engineered

agent-based systems, and their implications for
methodologies .

n Part 4 (≅1 hour): The Road Ahead & Discussion
– Open research directions and visions….

EASSS 2002 Agent-Oriented Software
Engineering

4

NOTE

n In this tutorial we present
– 70% FACTS

– 30% OPINIONS

n Please, feel free to contradict us!
– We are not necessarily repositories of

TRUTH!

– Your ideas may be much fresher!

5

Part 1

Key concepts in agent-
oriented software engineering

EASSS 2002 Agent-Oriented Software
Engineering

6

Part 1: Outline

n Why?
– Software engineering, agents, agent-oriented

software engineering (AOSE).

n The software engineering perspective on
agent-based computing:
– Pervasive, novel agent-oriented abstractions ;
– Engineering complex systems is engineering

agent systems.

n New levels of abstraction in software
development:
– The knowledge level vs. the t he social level.

n Agent-based analysis and design:
– At the knowledge level and at the social level.

EASSS 2002 Agent-Oriented Software
Engineering

7

What is Software Engineering

n Software is pervasive and critical:
– It cannot be built without a disciplined, engineered,

approach

n There is a need to model and engineer both:
– The development process:

• Controllable, well documented, and reproducible ways of
producing software;

– The software:
• Well-defined quality level (e.g., % of errors and

performances);
• Enabling reuse and maintenance.

n Requires:
– Abstractions, methodologies and tools.

EASSS 2002 Agent-Oriented Software
Engineering

8

Software Engineering
Abstractions

n Software deals with “abstract” entities, having a
real-world counterpart:

• Numbers, dates, names, persons, documents ...

n In what term should we model them in
software?

• Data, functions, objects, agents …
• I.e., what are the ABSTRACTIONS that we have to use to

model software?

n May depend on the available technologies!
• Use OO abstractions for OO programming envs.;
• Not necessarily: use OO abstractions because they are

better, even for COBOL programming envs.

EASSS 2002 Agent-Oriented Software
Engineering

9

Methodologies

n A methodology for software development:
– Is intended to give discipline to software

development.

– Defines the abstractions to use to model software:
• Data-oriented methodologies, object-oriented ones …
• Define the MINDSET of the methodology.

– Disciplines the software process:
• What to produce and when;
• Which artifacts to produce.

EASSS 2002 Agent-Oriented Software
Engineering

10

The Classical “Cascade” Process

n The phases of software development:
– Independent of programming paradigm;
– Methodologies are typically organized

around this classical process.
• Inputs, outputs, internal activities of “phases”

ANALYSIS

DESIGN

DEVELOPMENT

TEST

MAINTENANCE

EASSS 2002 Agent-Oriented Software
Engineering

11

Tools

n Notation tools:
– To represent the outcomes of the software

development phases:
• Diagrams, equations, figures …

n Formal models:
– To prove properties of software prior to

development
• Lamba and pi calculus, UNITY, Petri-nets, Z ….

n CASE tools:
– To facilitate activities:

• Simulators, rapid prototyping, code generators.

EASSS 2002 Agent-Oriented Software
Engineering

12

Example:
OO Software Engineering
n Abstractions:

– Objects, classes, inheritance, services.

n Methodologies:
– UDP (Rumbaugh), object-oriented analysis and

design;

– Centered around the object-oriented abstractions.

n Tools:
– UML (standard), E-R, class lattices, finite state

automata, visual languages …

EASSS 2002 Agent-Oriented Software
Engineering

13

Why Agent-Oriented Software
Engineering?
n Software engineering is necessary to

discipline:
– Software systems and software processes ;
– Any approach relies on a set of abstractions and

on related methodologies and tools

n Agent-based computing:
– Introduces novel abstractions

• Requires clarifying the set of necessary abstractions
• Requires adapting methodologies and producing new

tools

n Novel, specific agent-oriented software
engineering approaches are needed!

EASSS 2002 Agent-Oriented Software
Engineering

14

What are Agents?

n There has been some debate
– On what an agent is, and what could be

appropriately called an agent

n Two main viepoints:
– The (strong) Artificial Intelligence viewpoint :

• An agent must be, proactive, intelligent, and it must
conversate instead of doing client-server computing

– The (weak) Software Engineering Viewpoint
• An agent is a software component with internal (either

reactive or proactive) threads of execution, and that can
be engaged in complex and stateful interactions
protocols

EASSS 2002 Agent-Oriented Software
Engineering

15

What are Multiagent Systems?

n Again….
– The (strong) artificial intelligence viewpoint

• A multiagent system is a society of individual (AI software
agents) that interact by exchanging knowledge and by
negotiating with each other to achieve either their own
interest or some global goal

– The (weak) software engineering viewpoint
• A multiagent system is a software systems made up of

multiple independent and encapsulated loci of control
(i.e., the agents) interacting with each other in the context
of a specific application viewpoint….

EASSS 2002 Agent-Oriented Software
Engineering

16

The Software Engineering
Viewpoint on AO Computing
n We commit to it because:

– It focuses on the characteristics of agents that
have impact on software development

• Concurrency, interaction, multiple loci of control
• Intelligence can be seen as a peculiar form of control

independence; conversations as a peculiar form of
interaction

– It is much more general:
• Does not exclude the strong AI viewpoint
• Several software systems, even if never conceived as

agents-based one, can be indeed characterised in terms
of weak multi-agent systems

n Let’s better characterize the SE perspective
on agents…

EASSS 2002 Agent-Oriented Software
Engineering

17

Key Characteristics of Agents
(SE Viewpoint)
n Basic

– Autonomy & Proactivity

– Situatedness

– Interactivity

n Additional
– Mobility & Locality
– Openness

– Learning & Adaptative Capabilities

EASSS 2002 Agent-Oriented Software
Engineering

18

Agent Autonomy

n Process-based and Object-based applications
– global goal achieved via a global control scheme for

the application entities
– design by delegation of control

n Agent-based applications
– sub-goals assigned to autonomous agents

integrating execution capabilities, i.e., threads
– implies perceiving agents as proactive entities
– multiple independent loci of control in applications
– design by delegation of responsibility

n SE Advantages
– Control encapsulat ion as a dimension of modularity
– Conceptually simpler to tackle than a single (or

multiple inter-dependent) locus of control

EASSS 2002 Agent-Oriented Software
Engineering

19

Agent Situatedness

n Agents typically perceive a portion of the
external world – an “environment”
– Physical environment

• A manufacturing plan, a room, etc…
– Computational environment

• A Web-site, an information system, etc…
n They have to sense and effect:

– By perceiving what’s happening in the
environment, and possibly influencing it:

• control of manufacturing tools
• access and update to Web data and services

n SE Advantages
– Clear separation of concerns between:

• the active computational parts of the system (the agents)
• the resources of theenvironment

EASSS 2002 Agent-Oriented Software
Engineering

20

Agent Interactivity
n Agents may execute in multiagent contexts and

interact with each other
– Agent communication

• agents may be in need to exchange information
– Agent coordination

• agents may be in need of orchestrating their activities
n Collaborative or competitive interactions

– agents interact to achieve a common goal
– competition as a peculiar form of collaboration

• Useful goals achieved via self-interest (market models)
n SE implications

– Not a single characterising protocol of interaction
(e.g., client -server)

– Interaction protocols as an additional SE dimension

EASSS 2002 Agent-Oriented Software
Engineering

21

Agent Mobility & Locality
n Autonomous components can migrate across

different multi-agent systems (or contexts)
– e.g., across different Internet nodes or domains
– Interaction are limited to a context

n Non-Functional Motivations
– save of bandwidth (local access to data and

services)
– robustness (independence from connection flaws)
– intrinsic for software on mobile devices

n SE Motivations
– Additional dimension of autonomous behavior
– Improve locality in interactions
– Reduce application complexity by sub-dividing

systems into sub-systems and by identifying
interaction localities

EASSS 2002 Agent-Oriented Software
Engineering

22

Openess of Multiagent Systems
n The agents in a system may not be fixed

– New agents can be created or enter a multiagent
systems context

– Mobile agents can arrive
– Unknown – legacy and elsewhere implemented –

may enter a multiagent system
– E.g., agent marketplaces must by definition open

n Technological implications
– Need of standards ! (e.g. FIPA)
– Need of proper infrastructures supporting the

interoperations
n SE Implications

– Controlling self-interested agents, malicious
behaviors, and badly programmed agents

– Dynamic re-organization of software architecture

EASSS 2002 Agent-Oriented Software
Engineering

23

Learning and Adaptive Agents
n When agents have to be “intelligent”

– They must be possibly able to learn from previous
experiences

– Improving the effectiveness of its actions
n When agents lives in dynamic scenarios

– They must be able to adapt their behavior to
changing situations

– Re-shaping themselves
n SE is not concerned in

– HOW learning and adaptiveness are achieved
n But it may be concerned with

– WHAT could be the impact on the global software
system of having components that change their
behaviour dynamically? (see open directions….)

EASSS 2002 Agent-Oriented Software
Engineering

24

MAS Characterisation

Environment

Agent Agent

Agent
Agent

Agent

Agent

Organization

Inter-agent
Interactions

Access to the
Environment

EASSS 2002 Agent-Oriented Software
Engineering

25

Agent-Oriented Abstractions

n The development of a multiagent system should
fruitfully exploit abstractions coherent with the
above characterisation:
– Agents, autonomous entities , independent loci of

control, situated in an environment , interacting with
each others

– Environment , the world of resources agents perceive
– Interaction protocols, as the acts of interactions

between agents

n In addition, there may be the need of abstracting:
– The local context where an agent live (e.g., a sub-

organization of agents) to handle mobility & opennes

n Such abstractions translates into concrete
entities of the software system

EASSS 2002 Agent-Oriented Software
Engineering

26

Agent-Oriented Methodologies

n The is need for SE methodologies
– Centered around specific agent-oriented abstractions
– The adoption of OO methodologies would produce

mismatches
• Classes, objects, client-servers: little to do with agents!

n Each methodology may introduce further
abstractions
– Around which to model software and to organize the

software process
• E.g., roles, organizations, responsibilities, belief, desire and

intentions…
– Not directly translating into concrete entities of the

software system
• E.g. the concept of role is an aspect of an agent , not an agent

EASSS 2002 Agent-Oriented Software
Engineering

27

Agent-Oriented Tools

n SE requires tools to
– represent software

• E.g., interaction diagrams, E-R diagrams, etc.

– verify properties
• E.g., petri nets, formal notations, etc.

n AOSE requires
– Specific agent-oriented tools

• E.g., UML is not suitable to model agent
systems and their interactions

EASSS 2002 Agent-Oriented Software
Engineering

28

Why Agents and Multiagent
Systems?
n Other lectures may have already outlined the

advantages of (intelligent) agents and of
multiagent systems, and their possible
applications
– Autonomy for delegation (do work on our behalf)
– Monitor our environments
– More efficient interaction and resource

management

n Here, we mostly want show that
– Agent -based computing, and the abstractions

it uses, represent a new and general -purpose
software engineering paradigm!

EASSS 2002 Agent-Oriented Software
Engineering

29

There is much more to agent-
oriented software engineering

n AOSE is not only for “agent systems.”
– Most of today’s software systems have

characteristics that are very similar to those of
agent and multiagent systems

– The agent abstractions, the methodologies, and
the tools AOSE suit such software systems

n AOSE is suitable for a wide class of scenarios
and applications!
– Agents’ “artificial Intelligence” features may be

important but are not central

EASSS 2002 Agent-Oriented Software
Engineering

30

Agents and Multiagent Systems
are Everywhere!
n Examples of components that can be

modelled (and observed) in terms of agents:
– Autonomous network processes;
– Computing-based sensors;
– PDAs;
– Robots.

n Example of software systems that can be
modelled as multiagent systems:
– Internet applications;
– P2P systems;
– Sensor networks;
– Pervasive computing systems.

EASSS 2002 Agent-Oriented Software
Engineering

31

Internet Applications

n Components (Web processes) autonomous
– Each component is a process in a site,

independently developed and independently
running, with an (observable) proactive behavior

n Components are situated
– The data, services , and resources of a site, that

the components can “sense” and effect
n Components are interactive

– Interaction are based on client -server (at the lower
level) à too complex to tackle

– Effective modeling requires modeling interactions
from a higher-level perspective

n In addition
– Components can be mobile (Java mobile code)
– Interactions can be local (security)

EASSS 2002 Agent-Oriented Software
Engineering

32

P2P Systems

n Set of independent user-application
– Representing autonomous loci of control

n Controlling a set of resources
– E.g, files, mp3, CPU power, storage…
– Therefore, situated in the environment represented

by such resources

n Interacting with each other
– To exchange data, files , CPU cycles , etc.
– Exchanges not necessarily relying on client -server

interactions à negotiations for use of resources

n In addition:
– P2P communities intrinsically open and dynamic
– Spontaneous (re-)organization

EASSS 2002 Agent-Oriented Software
Engineering

33

Sensor Networks

n Micro-computer-based systems
– Autonomous by definition

n Situated in an environments
– Dispersed outdoor (or in manufacts) and devoted

to monitor that a portion of the environment

n Interactive (wireless or optical connetions)
– Global monitoring data must be organized from

local observation
– Such data organization may require complex –

non client -server – interactions and negotiations

n In addition
– Local interactions (limited comms. capability)
– Openness: sensors die and new can be added

EASSS 2002 Agent-Oriented Software
Engineering

34

Pervasive Computing
Applications
n Characterization similar to sensor netwoks:

– Autonomy: computers and devices dispersed
everywhere

– Situated: devoted to monitor and effect specific
portion of the environment

– Interactive: to provide services to anyone, and to
coordinate composite services

– In addition:
• Mobile: we can wear computers, we can move computer

based objects around the world (e.g., a TV in different
rooms, a car in different nations)

EASSS 2002 Agent-Oriented Software
Engineering

35

Summarizing

n A software engineering paradigm define:
– The mindset , the set of abstractions to be used in

software development and, consequently,

– Methodologies and tools
– The range of applicability

n Agent-oriented software engineering defines
– Abstractions of agents, environment, interaction

protocols, context
– Of course, also specific methodologies and tools

(in the following of the tutorial)

– Appears to be applicable to a very wide rage of
distributed computing applications….

EASSS 2002 Agent-Oriented Software
Engineering

36

Getting Deeply into Agent-
Oriented Software Engineering…

n For the definition of a suitable methodology for
multiagent systems development (and for
presenting methodologies in this lecture…)
– there is need of better characterizing agents, multi-

agent systems, and the associated mindset of
abstractions

• How can we model agent autonomy, situatedness and
sociality

– There is need of understanding how the “traditional”
cascade software engineering process maps into
agent-oriented software development

• What are analysis and design in AOSE?

EASSS 2002 Agent-Oriented Software
Engineering

37

Characterizing Agents

n No agreement on the definition of agent.
n Historically, two approaches to characterize

“intelligent”, i.e., rational, agents and
multiagent systems:
– Operational: agents and multiagent systems are

systems with particular features, i.e.,
• Particular structure;
• Particular behaviour.

– Based on system levels: agents and multiagent
systems are new system levels.

n These approaches are complementary.

EASSS 2002 Agent-Oriented Software
Engineering

38

Operational Characterization

n Particularly suited for rational agents because
it is based on logics.

n Rational agents (Wooldridge):
– Described in terms of a belief, desires and

intention;

– Beliefs, desires and intentions are structured so to
make the agent behave rationally;

– Independent from the internal agent architecture;

– The whole work on LORA devoted to it.

EASSS 2002 Agent-Oriented Software
Engineering

39

Operational Characterization

n Simple control loop of a rational agent:
1 forever
2 sense the environment
3 update the model of the environment
4 deliberate for a new goal
5 means-end reason to obtain a plan

to achieve the goal
6 execute the plan

EASSS 2002 Agent-Oriented Software
Engineering

40

Operational Characterization

n The operational characterization:
– Draws from well -founded logics;

– Does not depend on the internal architecture of
the agents.

n This approach has, at least, two problems:
– Does not justify reasonably why we should adopt

agents instead of other technologies;

– Grounds rationality on the axioms of a logic;

– Could not make any accepted agreement.

EASSS 2002 Agent-Oriented Software
Engineering

41

System Levels

n System level: structured group of concepts
that support the definition of an engineered
model of a system.

n Historically, introduced to hide details in
hardware design, e.g.:
– A logic gate level design does not care about

transistors;
– A register transfer level design does not care

about gates.

n System levels are levels of abstraction.

EASSS 2002 Agent-Oriented Software
Engineering

42

System Levels

n A system level is composed of:
– Medium, set of atomic concepts that the system

level processes;
– Components, atomic concepts that we use to

assembly the system;

– Composition laws ruling how components can be
assembled to form a system;

– Behaviour laws determining how the behaviour of
the system depends on:

• The behaviour of the single components;
• The architecture of the system.

EASSS 2002 Agent-Oriented Software
Engineering

43

Example: Logic Gate Level

E.g., input and output of logic gates
are connected through lines

Composition
Law

Single-bit signalsMedium

The laws for composing truth tables of
logic gates

Behaviour Law

Logic gates, linesComponents

Unit of a processor that manipulates
registers

System

Logic Gate Level ElementElement

EASSS 2002 Agent-Oriented Software
Engineering

44

Knowledge Level

n At the beginning of the 80’s the AI had
the problem of defining knowledge.

n Introduced a new system level, called
knowledge level, to provide a scientific
definition of knowledge (Newell).

n The knowledge level is used to model
agents, i.e., rational systems that
process knowledge.

EASSS 2002 Agent-Oriented Software
Engineering

45

Knowledge Level

KnowledgeMedium

Principle of rationalityBehaviour Law

Goal, action, bodyComponents

AgentSystem

Knowledge Level ElementElement

n In order to model an agent, we need:
– A body, i.e., a means for the agent to interact with its

environment;
– A set of actions the agent can perform on its environment.

Each action has pre- and post-conditions;
– A set of goals.

EASSS 2002 Agent-Oriented Software
Engineering

46

Knowledge Level

n The knowledge level:
– Relies only on the principle of rationality to

account for the behaviour of the agent;
– Focuses on modelling one single agent.

n Today, we build systems in terms of:
– Agents that may not be proved to be

rational at all;
– Interacting agents that are the unit of reuse

and of encapsulation.

EASSS 2002 Agent-Oriented Software
Engineering

47

Social Level

Obligation, influence mechanismsMedium

Principle of organizational rationalityBehaviour Law

Agent, organizational relation,
interaction channel, dependency

Components

OrganizationSystem

Social Level ElementElement

n Jennings introduced the social level on top of
the knowledge level.

n It allows to create organizational models of
multiagent systems.

EASSS 2002 Agent-Oriented Software
Engineering

48

Social Level

n The social level:
– Moves all design towards social issues, does not

care of how to design each agent;

– Cannot describe emerging organizations.

n Best practice of architectural patterns
suggests that organization is not enough to
design a system, e.g., we need:
– Connectors for flexible composability;

– Contracts to support verifiable composability.

EASSS 2002 Agent-Oriented Software
Engineering

49

Agent Level

Representation of belief , goal and
capabilities

Medium

Principle of rationalityBehaviour Law

Belief , goal, action, role, interaction
rule

Components

Multiagent systemSystem

Agent Level ElementElement

n Between the knowledge and the social level.

n Allows to model multiagent systems that:
– Rely on message passing and on the speech-act theory;
– Exploits the possibilities of the FIPA infrastructure.

EASSS 2002 Agent-Oriented Software
Engineering

50

Agents and Other Technologies

n Since FIPA, multiagent systems are often
compared with object-oriented systems:
– Both rely on encapsulated units that interact;

– Both rely on message passing;

– For both we can define an architecture;

– … and many other similarities.

n The comparisons found in the literature are
often poor.

EASSS 2002 Agent-Oriented Software
Engineering

51

“Agents can say…”

n Use of autonomy to draw a line between
agents and objects (Parunak):
– “Agents can say go,” i.e., agents can take the

initiative;
– “Agents can say no,” i.e., agents can refuse to

perform a requested service.

n These seems relevant differences with
object-oriented method invocation, but:
– Active objects have a long and honored history;
– Refusal is not useful per se.

EASSS 2002 Agent-Oriented Software
Engineering

52

Comparing the Meta-Models

NoneClassesType system

Pre-/post-conditions

Goal delegation

Composability

Exchange of parts of
the knowledge base

Knowledge base

Agents

Task delegationDelegation

Inheritance, mostly for
composability

Reuse

Design by contractResponsibility

Request for service with
certain parameters

Messaging

Properties and valuesState

ObjectsElement

EASSS 2002 Agent-Oriented Software
Engineering

53

Comparing Granularity

n Objects have a highly dynamic lifecycle, they
are:
– Created just for serving a request;

– Cloned just for performance reasons;
– Introduced to promote reusability;

– … often created and destroyed.

n Agents are more coarse grained:
– Reason on their knowledge bases;

– Publish their capabilities to a DF;
– … they are rarely created and destroyed.

EASSS 2002 Agent-Oriented Software
Engineering

54

Agents and Components

n It seems more reasonable to compare agents
against software components, e.g., EJBs,
CORBABeans and .NET Components.

n They have the same granularity and FIPA
provides a similar infrastructure.

n The questions still remain:
– What are the advantages of using an agent

instead of a component?
– When shall we chose one or the other?

EASSS 2002 Agent-Oriented Software
Engineering

55

Agent-Based Analysis

n Analysis aims to understand, at least:
– What are the main actors interacting with the

system;

– How the system interacts with these actors;

– What the system is supposed to do.

n The system is a closed entity and we do not
look into it to avoid anticipating design issues
and decisions.

n Where do agents enter the picture?

EASSS 2002 Agent-Oriented Software
Engineering

56

Agent-Based Analysis

n We associate agents with the entities of the
scenarios we are analyzing.

n Then, we associate accordingly:
– Roles, responsibilities and capabilities;
– Interaction patterns between agents.

n This provides a neutral view of the problem.
n Methodologies, e.g., Tropos and GAIA, do not

use the word agent to identify analysis-phase
entities.

EASSS 2002 Agent-Oriented Software
Engineering

57

Analysis at the Knowledge Level

n We need to identify for each agent:
– Its beliefs;

– Its goals;

– Its body, i.e., the way it interacts with the
environment;

– Its actions on the environment .

n We need to identify the behavior of the
environment, i.e., how it interacts with the
body and reacts to actions.

EASSS 2002 Agent-Oriented Software
Engineering

58

Analysis at the Knowledge Level

n Interactions with other agents are
mediated through the shared
environment :
– No explicit communication.

n Avoiding the identification of any
architecture accounts for self-
organization.

EASSS 2002 Agent-Oriented Software
Engineering

59

Analysis at the Knowledge Level

n Various methodologies provide different:
– Artifacts;

– Paths in the process;

To identify these elements.

n The elements are an alternative view, and
can be derived from:
– The responsibilities of the agent;

– The capabilities of the agent;

– Any implicit organization within the agent system.

EASSS 2002 Agent-Oriented Software
Engineering

60

Analysis at the Social Level

n Focus on the analysis of an organization
made of agents.

n We need to identify:
– The roles in the organization;

– The organizational relations between roles;

– The dependency between roles;

– The interaction channels;

– The obligations;

– The influence mechanisms.

EASSS 2002 Agent-Oriented Software
Engineering

61

Analysis at the Social Level

n Interactions between agents is
mediated through the possible
interactions between the roles:
– No explicit communication.

n The identification of a fixed architecture
prohibits self-organization.

EASSS 2002 Agent-Oriented Software
Engineering

62

Agent-Based Design

n Design aims to engineer, at least:
– What are the main components interacting within

the system;

– What are the responsibilities and the capabilities
of each component in the system;

– How the components interact to implement the
system, i.e., the architecture of the system.

n Where do agents enter the picture?

EASSS 2002 Agent-Oriented Software
Engineering

63

Agent-Based Design

n We associate agents with the components we
use to build the system.

n Then, we associate accordingly:
– Roles, responsibilities and capabilities;
– Interaction patterns between agents.

n Differently from analysis: we need to choose
on which agents to use and how they interact.

n Agents at the design phase can have nothing
to do with agents at the analysis phase.

EASSS 2002 Agent-Oriented Software
Engineering

64

Design at the Knowledge Level

n We need to decide for each agent:
– Its beliefs;

– Its goals;

– Its body, i.e., the way it interacts with the
environment;

– Its actions on the environment .

n We also need to decide the behavior of the
environment, i.e., how it interacts with the
body and reacts to actions.

EASSS 2002 Agent-Oriented Software
Engineering

65

Design at the Knowledge Level

n The design decisions are on the basis of
consideration regarding:
– Reusability;

– Performances;

– Maintainability;

– … and all other features we would like our
software to have.

n No design patterns have been identified for
knowledge-level design.

EASSS 2002 Agent-Oriented Software
Engineering

66

Design at the Social Level

n We need to choose for our society, i.e., for
our architecture:
– The roles in the organization;

– The organizational relations between roles;
– The dependency between roles;

– The interaction channels;
– The obligations;
– The influence mechanisms.

n We do not consider the environment at the
social level.

EASSS 2002 Agent-Oriented Software
Engineering

67

Design at the Social Level

n The design decisions are on the basis of
consideration regarding:
– Reusability;

– Performances;

– Maintainability;

– … and all other features we would like our
software to have.

n We have design patterns for this kind of
design in organizational theory.

68

Part 2

Overview and evaluation of
agent-oriented software
engineering methodologies

EASSS 2002 Agent-Oriented Software
Engineering

69

Outline

n What is a methodology (reminder)?
n How can we evaluate it?

– Evaluation techniques
– Criteria for featured based evaluation

n Existing Agent-Oriented Methodologies
n Methodologies Overview and Evaluation

– GAIA
– AUML (Agent Unified Modeling Language)
– DESIRE (DEsign and Specification of Interacting

Reasoning)
– OPM/MAS (Object-Process Methodology for Multi-

Agent System)

EASSS 2002 Agent-Oriented Software
Engineering

70

What is a methodology ?

1: a body of methods, rules, and postulates
employed by a discipline: a particular
procedure or set of procedures

2 : the analysis of the principles or procedures
of inquiry in a particular field

(Merriam-Webster)

To evaluate a methodology, we need to recall what a
methodology is:

EASSS 2002 Agent-Oriented Software
Engineering

71

But when referring to software: A methodology is the set of
guidelines for covering the whole lifecycle of system
development both technically and managerially.

When evaluating it, we need to check whether it provides the
following:
– a full lifecycle process
– a comprehensive set of concepts and models
– a full set of techniques (rules, guidelines, heuristics)
– a fully delineated set of deliverables
– a modeling language
– a set of metrics
– quality assurance
– coding (and other) standards
– reuse advice
– guidelines for project management

What is a methodology ?

EASSS 2002 Agent-Oriented Software
Engineering

72

Evaluation techniques

n Feature comparison – a comparison that follows a set
of ideal modeling technique features

– Advantages: Easy to perform if criteria are well defined
– Drawbacks: subjective

n Meta-modeling – a comparison of meta-level of
modeling techniques by mapping them to a super
modeling technique or comparing their parts

– Advantages: more objective
– Drawbacks: not sufficiently objective

n Metrics – a comparison of the formal meta-modeling
according to pre-defined metrics (such as number of
constructs)

– Advantages: objective
– Drawbacks: a lot of empirical work is needed

EASSS 2002 Agent-Oriented Software
Engineering

73

Evaluation techniques

n Ontological evaluation – a comparison of
exiting vs. needed constructs (e.g., system,
event)

– Advantages: has a strong theoretical foundation
– Drawbacks: difficult to justify foundation choice

n Survey – gathers data on attitudes, opinions
impressions and beliefs of human subjects

– Advantages:enables gathering information
regarding the ways subjects understand/perceive
the technique

– Drawbacks: low response rate to questionnaires,
the results characteristics are subjective

EASSS 2002 Agent-Oriented Software
Engineering

74

Evaluation techniques
n Laboratory experiment – enables manipulation of
independent variables (e.g., modeling technique) and
measurement of the effect on the dependent variable
(e.g., accuracy)

– Advantages: enables control over variables
– Drawbacks: may not reflect the real world

n Field experiment – same as laboratory experiment but
performed within organizations

– Advantages: real -world experiment
– Drawbacks: difficult to conduct

n Case study – there is no intervention of the evaluator
– Advantages: promotes acceptance by

organizations
– Drawbacks: subjective

EASSS 2002 Agent-Oriented Software
Engineering

75

Feature-based evaluation

n We compare features of several
methodologies

n For this, we initially list the features to be
compared, classified as follows:
– Agent-based system characteristics
– Software engineering criteria

n The properties selected are a subset of the
available, however they are perceived by
many in the community as the important
properties of agent-based systems.

n By comparison, we learn strengths and
weaknesses of methodologies and
differences between them

EASSS 2002 Agent-Oriented Software
Engineering

76

Agent-Based System Characteristics

n Autonomy: unlike objects, agents may be active and
are responsible for their own activities. An agent has
control over both its reactive and proactive behaviors

n Complexity: agent-based systems are basically sets
of components (agents) that interact with each other
in order to achieve their goals. These systems may
consist of decision-making mechanisms, learning
mechanisms, reasoning mechanisms, and other
complex algorithms

n Adaptability: agent-based systems have to be
flexible in order to adjust their activities to the
dynamic environmental changes

EASSS 2002 Agent-Oriented Software
Engineering

77

Agent-Based System Characteristics

n Concurrency: an agent may need to perform several
activities or tasks at the same time. The concurrency
requirement implies that an agent -based system
must be designed to carry out parallel processing

n Communication richness: a definition of an agent
includes its autonomous activity. As an autonomous
entity, an agent must establish communication with
its environment, which may include other agents and
information sources. The communication is
characterized by its type (inter-agent or intra-agent)
and its content

EASSS 2002 Agent-Oriented Software
Engineering

78

Agent-Based System Characteristics

n Distribution: Multi-agent systems often operate on
different hosts and are distributed over a network

n Mobility: An agent might sometimes want to
transport itself from one environment or platform to
another

n Security and privacy: Due to agents' social
activities, they might be exposed to intrusion to their
data, state, or activities. Agents might want to keep
some information for themselves or reveal it just to a
specific entity (e.g., another agent)

n Openness: Multi-agent systems are sometimes
flexible in the sense they can dynamically decide
upon their participants

EASSS 2002 Agent-Oriented Software
Engineering

79

Software Engineering Criteria
n Preciseness: the semantics of a modeling technique

must be unambiguous in order to avoid
misinterpretation of the developed models by those
who use it

n Accessibility: a modeling technique should be
comprehensible to both experts and novices

n Expressiveness: a modeling technique should be
applicable across multiple domains and represent the
following aspects: the structure of the system; the
knowledge encapsulated within the system; the system ontology
and relationships with other system aspects; the data flow within
the system; the control flow within the system; the resource
constraints (i.e., time, CPU and memory); the system’s physical
architecture

EASSS 2002 Agent-Oriented Software
Engineering

80

Software Engineering Criteria

n Modularity: a modeling technique should be
expressible in stages. That is, when new specification
requirements are added, there is no need to modify

pervious parts, and these may be used as part of the
new specification

n Complexity management : a modeling technique
should be expressed, and then examined, at various

levels of detail

n Executability: a prototyping capacity or a simulation

capacity should be associated with at least some
aspects of the modeling technique

EASSS 2002 Agent-Oriented Software
Engineering

81

Software Engineering Criteria

n Refinability: a modeling technique should provide a

clear path for refining a model through gradual stages
to reach an implementation, or at least for clearly

connecting the implementation level to the design
specification.

n Analyzability: a modeling technique should provide
a method for consistency and coverage checking.

n Portability (of modeling): a modeling technique
should provide a generic basis for modeling agent -
based systems without coupling them to a specific

architecture, infrastructure, or programming
language. EASSS 2002 Agent-Oriented Software

Engineering
82

Let’s Now Overview & Evaluate…

n Existing Agent -Oriented Methodologies
– GAIA

– AUML (Agent Unified Modeling Language)

– DESIRE (DEsign and Specification of
Interacting Reasoning)

– OPM/MAS (Object-Process Methodology
for Multi-Agent System)

EASSS 2002 Agent-Oriented Software
Engineering

83

Agent-Oriented Methodologies -
Knowledge Engineering Approach

n Knowledge engineering is the process of
eliciting, structuring, formalizing and
operationalizing information and knowledge
– Advantages

• Provides techniques for modeling the agent’s knowledge

– Drawbacks
• Does not address software engineering criteria

– Examples
• DESIRE (Treur, Jonker, Brazier)
• MAS-CommonKADS(Iglesias, Garijo, Gonzalez,

Velasco)
• …

EASSS 2002 Agent-Oriented Software
Engineering

84

Agent-Oriented Methodologies -
Software Engineering Approach

n Software Engineering (OO) is the application of a
systematic, disciplined, quantifiable approach (OO) to
development, operation, and maintenance of software
– Advantages

• Some claim that an agent is an active object (thus OO provides
everything we need)

• Commonly used and popular
– Drawbacks

• Agent communication is not just method invocation
• There is no reference to the mental state of the agent

– Examples
• AUML (Agent Unified Modeling Language) – Odell and al.
• GAIA – Wooldridge, Jennings, Kinny , Zambonelli
• ADEPT – Jennings, Faratin, Norman, O'Brien
• MESSAGE/UML - EURESCOM Project
• MaSE (Multiagent Software Engineering) – DeLoach
• OPM/MAS – Sturm, Dori , Shehory
• …

EASSS 2002 Agent-Oriented Software
Engineering

85

Evaluated Methodology
n GAIA

– Represents an extension of the software engineering
approach

– Has a solid social foundation
n AUML

– Represents the pure software engineering approach
– It is an extension of the standard software engineering

approach - UML
n DESIRE

– Represents the pure knowledge engineering approach
– Has proven capabilities (prototypes)

n OPM/MAS
– Represents an approach combing object-orientation

and process-orientation
– Has been evaluated systematically

EASSS 2002 Agent-Oriented Software
Engineering

86

Evaluation Process

n For each methodology:
– The basic models and guidelines are

presented
• We do not present the methodology, rather, we

present its modeling technique (i.e., the
analysis and design stages)

– A case study demonstrates the modeling
technique and is used to compare the
capabilities of different techniques

EASSS 2002 Agent-Oriented Software
Engineering

87

Evaluation Process

n Selection of a case study. For evaluating software
engineering aspects of agent -based systems, the case
study:

– Should include agent characteristics, in particular:
• Autonomy, Adaptability, Communication richness

– Be simple (for clear demonstration), but not too
simple (to demonstrate handling of complexity)

– May (optionally) include agent knowledge handling

n Evaluation of the modeling techniques in terms of their
agent-based system characteristics

n Evaluation of the modeling techniques in terms of their
software engineering criteria

EASSS 2002 Agent-Oriented Software
Engineering

88

Case Study

Auction agent
1.The configurator: a GUI component, enables the user
to control and monitor the agent's activity
2.The parser: translates retrieved information into an
internal structure
3.The bidder: submits bids according to buying strategy.
Implements two stages, bid and confirmation
4.The manager: controls the agent's activity, monitors
the auction site, activates the parser, determines the
next bid, activates the bidder and terminates the agent's
purchasing activity

EASSS 2002 Agent-Oriented Software
Engineering

89

GAIA – Methodology Map

n The analysis phase consists of the following
models:
– Role definition (permissions , responsibilities and

protocols)
– Interaction model (used for protocol description)

n The design phase consists of the following
models:
– Agent model
– Service model (input, output , pre and post

condition)
– Acquaintance model

EASSS 2002 Agent-Oriented Software
Engineering

90

GAIA – Role model

n The permissions attribute states what
resources may be used to carry out the role
and what resource constraints the role's
executor is subject to

n The responsibilities attribute determines the
functionality of the role. This functionality is
expressed in terms of safety and liveness
properties

n The protocols attribute states the interactions
of the role with other roles. In addition it
states the internal activities of the role

EASSS 2002 Agent-Oriented Software
Engineering

91

GAIA – Role model

Role Schema: Manager (MA)

Description:
 Controls the auction agent activities

Protocol and Activities:
 CheckAuctionSite , ActivateParser , CheckForBid , Bid

Permission:
 reads supplied ItemNumber // the item number in the auction site
 AuctionDetails // the auction information

Responsibilities:
 Liveness:
 Manager = (CheckAuctionSite . ActivateParser . CheckForBid)+[Bid]
 Saftey :
 true

The Manager role scheme
EASSS 2002 Agent-Oriented Software

Engineering
92

GAIA – Interaction Model

AuctionAgent AOM

supplied ItemNumber input

AuctionDetails output

CheckAuctionSite

Manager AuctionSite
Manager

Connect to the auction site
for auction status and

information

Protocol name

Sender Receiver

Description

AuctionAgent AOM

supplied ItemNumber input

AuctionDetails output

CheckAuctionSite

Manager AuctionSite
Manager

Connect to the auction site
for auction status and

information

Protocol name

Sender Receiver

Description

The Interaction Model of the CheckAuctionSite protocol

EASSS 2002 Agent-Oriented Software
Engineering

93

GAIA – Design Phase Models

AuctionSite

AuctionAgent

 Auct ionSi te A u c t i o n A g e n t

1

Auc t ionS i t eManage r P a r s e r B i d d e r C o n f i g u r a t o rr M a n a g e r

1

The Service Model

Service Input Output Pre-conditionPost -condition

Get auction details ItemNumber AuctionDetails true true

Validate user User Exists true (exists=true) ∨ (exists=false)

Bid User, ItemNumber,
Price

Success user exists (success=true) ∨ (success=false)

The Agent

Model

EASSS 2002 Agent-Oriented Software
Engineering

94

GAIA – ABC Evaluation

ü Autonomy: the role encapsulates its environment

ü Adaptability: optional execution can be expressed by the
liveness properties

ü Openness: a generic agent can be modeled and may
represent any new agent that will participate within the MAS
application

− Complexity: difficult to model complex computation
− Concurrency: this issue is not dealt with

− Communication richness: message content and
architecture are not dealt with

− Distribution: this issue is not dealt with

− Mobility: this issue is not dealt with
− Security and privacy: this issue is not dealt with explicitly

EASSS 2002 Agent-Oriented Software
Engineering

95

GAIA – SE Evaluation

ü Preciseness : provided via the liveness and safety properties
ü Accessibility: simple and clear models

ü Expressiveness: generic structure, can handle various systems.
Flatness may restrict to small/medium systems. No explicit
representation of data/control flow, knowledge, structure

ü Modularity: use of building blocks supports modularity, but
changes within a role may cause a chain reaction of changes

ü Portability: no limitations
− Complexity Management : no hierarchical presentation or another

mechanism for complexity management
− Executability: In GAIA this issue is out of scope
− Refinability: GAIA provides guidelines on moving from analysis

to design, but no guidelines for moving toward implementation
− Analyzability: no CASE tool is provided

EASSS 2002 Agent-Oriented Software
Engineering

96

AUML

n Agent Unified Modeling Language is
based on UML

n AUML is not a language yet, it is a
proposal

n Extended with the following:
– Organized special agent class
– New concept of role
– New Agent Interaction Protocol Diagrams

EASSS 2002 Agent-Oriented Software
Engineering

97

AUML – Methodology Map

++Agent Interaction Protocol

Extension Mechanism

Subsystem

Model

Package

Activity

Statechart

Use Case

Collboration

Sequence

Deployment

Component

Object

Class

Diagrams \ stage:

++

++

++

++

++

++

+

+++

+++

++

++

++

++

ImplementationDesignAnalysisRequirements

EASSS 2002 Agent-Oriented Software
Engineering

98

UML

n Structural Diagrams
– Class Diagram - A class diagram is a graph of

Classifier elements connected by their various static
relationships

– Object Diagram - An object diagram is a graph of
instances, including objects and data values

– Component Diagram - A component diagram shows
the dependencies among software components,
including the classifiers that specify them and the
artifacts that implement them

– Deployment Diagram – A deployment diagram shows
the configuration of run-time processing elements and
the software components, processes, and objects that
execute on them

EASSS 2002 Agent-Oriented Software
Engineering

99

UML

n Behavior Diagrams
– Use Case Diagram - Use case diagrams show actors and use

cases together with their relationships
– Sequence Diagram - A sequence diagram presents an

interaction, which is a set of messages between ClassifierRoles
within a collaboration

– Collaboration Diagram - A collaboration diagram presents
either a Collaboration, which contains a set of roles to be played
by Instances

– Statechart Diagram - A Statechartdiagram represents the
behaviorof entities capable of dynamic behavior by specifying
its response to the receipt of event instances

– Activity Diagram - An activity graph is a variation of a state
machine in which the states represent the performance of actions
or subactivities and the transitions are triggered by the
completion of the actions or subactivities

EASSS 2002 Agent-Oriented Software
Engineering

100

UML
n Model Management Diagrams

– Packages - A package is a grouping of model elements.
– Subsystems – A subsystem represents a behavioral unit in the

physical system, and hence in the model.
– Models - A model captures a view of a physical system. Hence, it

is an abstraction of the physical system with a certain purpose;
n Extension Mechanism

– Constraints - A constraint is a semantic relationship among model
elements that specifies conditions and propositions that must be
maintained as true; otherwise, the system described by the model is
invalid

– Comments - A comment is a text string attached directly to a
model element

– Stereotypes - A stereotype is a new class of metamodelelement
that is introduced at modeling time

– Tags - A tag definition specifies the tagged values that can be
attached to a kind of model element.

EASSS 2002 Agent-Oriented Software
Engineering

101

agent-class-name / role-name1,
role-name2, …

state -description

actions

methods

agent-head-
automata -name

[constraint] society -name

capabilities, service descriptions,
supported protocols

CA-1/
protocol

CA-1/
protocol

CA-2/
protocol

not-under
-stood

CA-2/
protocol

default

AUML – Agent Notions

EASSS 2002 Agent-Oriented Software
Engineering

102

CA-1/protocol

«actions» +methods-a()
«methods» +methods-m()

«state-description» -fields

«agent»
agent-class-name / role-name1, role-name2,

...

default

CA-2/protocol CA-2/protocol

default

CA-1/protocol

[constraint]
society-name

capabilities,service
description,supported
protocols

AUML – Agent Notions in UML

EASSS 2002 Agent-Oriented Software
Engineering

103

AUML – Agent Interaction Protocol

EASSS 2002 Agent-Oriented Software
Engineering

104

AUML – Extensions

n Agent Interaction Protocol
– Layered protocol

– Nested protocol

– Interleaved protocol

n Extending the behavioral diagrams to
be fitted to the Role concept

EASSS 2002 Agent-Oriented Software
Engineering

105

AUML – Knowledge Structure

Class Diagram

-bidStep : float
-itemNumber : int
-monitoringFrequency : int
-privateMaximalPrice : float
-userID : String
-userPassword : String

UserInfo
-bidStep : float
-closingDate : Date
-itemNumber : int

AuctionInfo

-price : float
-user : String

LeadingOffer

-name : String

Strategy

EASSS 2002 Agent-Oriented Software
Engineering

106

AUML – System Structure

n Class Diagram

Inform/FIPA-
Aution

«actions» +parse()
«actions» +bid()
«actions» +search()
«actions» +decideBidding()

«state-description» -winningStatus
«state-description» -currentActivity
«state-description» -strategy

«agent»
AuctionAgent/Trader

reject-proposal/
FIPA-Auction

propose/FIPA
-Auction

accept-proposal
/FIPA-Auction

EASSS 2002 Agent-Oriented Software
Engineering

107

AUML – Agent Interaction Protocol

Auction Agent/ Trader AuctionSiteAgent/ Manager

request

inform

Item Number

Auction information

xnot-understood

reject

The protocol diagram of: Retrieve Information from the Auction S ite

EASSS 2002 Agent-Oriented Software
Engineering

108

AUML – ABC Evaluation
ü Autonomy: can be expressed within the agent class
ü Adaptability: agent flexibility is modeled within the behavioral

diagrams
ü Concurrency: can be expressed using the sequence and

protocol diagrams
ü Communication richness: a good definition of communication

through the protocol diagrams
ü Distribution: can be expressed using the deployment diagram
ü Openness: in AUML, an agent can be generic an thus represents

an unfamiliar agents
§ Mobility: there are some extensions for UML to support agent

mobility (not in AUML), but they do not support the dynamic
nature of mobility

§ Security and privacy: use case diagrams can be used as an
authentication and access control mechanisms

§ Complexity: modeling complex algorithms using AUML might be
exhausting

EASSS 2002 Agent-Oriented Software
Engineering

109

AUML – SE Evaluation

ü Preciseness : AUML is not a language yet, there are no formal
definitions

ü Modularity: supported by the OO paradigm
ü Complexity Management : supported via packages, models and

subsystems
ü Executability: AUML as a descended of UML can used the

techniques of UML for rapid prototyping. It can be code skeleton or
working application through statecharts (Rhapsody of I-Logix)

ü Refineability: AUML as a descended of UML can use the UML
guidelines for refinements and the Rational Unified Process (RUP)
for system development

ü Analyzability: AUML can be used within the existing tools of UML,
thus it can take advantage of their capabilities

ü Portability: not coupled to a specific language or architecture
§ Accessibility: integrating AUML models difficult to understand and

implement
- Expressiveness: AUML is lacking in depicting knowledge

representation and logical reasoning. In addition, it is lacking in
depicting some dynamic aspects of the system EASSS 2002 Agent-Oriented Software

Engineering
110

DESIRE

n DEsign and Specification of Interacting
REasoning framework

n DESIRE supports the following aspects
– Knowledge structure
– Task composition
– Information exchange
– Task sequencing
– Task delegation

EASSS 2002 Agent-Oriented Software
Engineering

111

DESIRE – Methodology Map
n The Problem Description includes the

requirements imposed on the design
n The Design Rational specifies the

choices made during the design
process

n The Conceptual Design includes
conceptual model for each agent, for
the external world and agents’
interactions

n The Detailed Design specifies all
aspects of a system knowledge and
behavior

n The Operational Design specifies the
parameters needed for the
implementation

Conceptual
Design

Detailed
Design

Operational
DesignPr

ob
le

m
 D

es
cr

ip
tio

n

D
es

ig
n

R
at

io
na

l

W e w i l l f o c u s o n t h e c o n c e p t u a l a n d d e t a i l e d d e s i g n w h i c h
c o n s i s t o f k n o w l e d g e c o m p o s i t i o n a n d p r o c e s s c o m p o s i t i o n

EASSS 2002 Agent-Oriented Software
Engineering

112

Knowledge Representation - General

n sort – can be viewed as a representation of
a part of the domain

n object – is an instance of sort

n function – maps between sets of sorts

n relation – is a concept needed to make
a statement

n meta description – a mechanism that
enables association of world state to a
specific sort

n information type – is a specification of a set
of sorts, relations, objects and functions

EASSS 2002 Agent-Oriented Software
Engineering

113

$100

$200

$300

PRICE

domain prices

A B C

PRODUCT

domain products price info

has price

PRICE PRODUCT

1 2

domain info domain products

price info domain prices

domain actionsproduct info

action info

Knowledge Graph ica l Represen ta t ion -

E x a m p l e

EASSS 2002 Agent-Oriented Software
Engineering

114

B
id

Q
uit

W
ait

ACTION

domain actionsproduct info

PRODUCT

2

PRODUCT

comparison

1

is cheaper

perform action

PRODUCT ACTION

1 2

Knowledge Graph ica l Represen ta t ion -

E x a m p l e

action info

EASSS 2002 Agent-Oriented Software
Engineering

115

i n f o r m a t i o n t y p e d o m a i n _ i n f o

i n f o r m a t i o n t y p e s
d o m a i n _ p r i c e s , d o m a i n _ p r o d u c t s , p r i c e s _ i n f o ;

e n d i n f o r m a t i o n t y p e

i n f o r m a t i o n t y p e d o m a i n _ p r i c e s

s o r t s P R I C E;
objec t s $ 1 0 0 , $ 2 0 0 , $ 3 0 0 : P R I C E ;

e n d i n f o r m a t i o n t y p e
i n f o r m a t i o n t y p e d o m a i n _ p r o d u c t s

s o r t s P R O D U C T;
objec t s A , B , C : P R O D U C T ;

e n d i n f o r m a t i o n t y p e

Knowledge Tex tua l Represen ta t ion -

E x a m p l e

EASSS 2002 Agent-Oriented Software
Engineering

116

information type price_info

sorts PRODUCT, PRICE;

relations has_price: PRICE*PRODUCT;

end information type
information type domain_actions

sorts ACTION ;
objects Bid, Stop, Wait: ACTION;

end information type
information type products_info

sorts PRODUCT;
functions comparison: PRODUCT * PRODUCT -> PRODUCT;

relations is_cheaper: PRODUCT

end information type

Knowledge Tex tua l Represen ta t ion -

E x a m p l e

EASSS 2002 Agent-Oriented Software
Engineering

117

i n f o r m a t i o n t y p e a c t i o n _ i n f o

sorts P R O D U C T , A C T I O N ;

r e l a t i o n s p e r f o r m _ a c t i o n : P R O D U C T * A C T I O N ;

e n d i n f o r m a t i o n t y p e

Knowledge Tex tua l Represen ta t ion -

E x a m p l e

EASSS 2002 Agent-Oriented Software
Engineering

118

Knowledge Base

knowledge base auction_kbs
information types domain_info;
contents

if is_cheaper(p: PRODUCT)
then perform_action (p: PRODUCT, Bid);

end knowledge base

domain infoauction kbs

EASSS 2002 Agent-Oriented Software
Engineering

119

DESIRE – Generic
Agent Model

EASSS 2002 Agent-Oriented Software
Engineering

120

DESIRE – Task Composition Model

own process control

act

product
info

search

action
info

The task control in DESIRE has an equivalent textual representation

EASSS 2002 Agent-Oriented Software
Engineering

121

DESIRE – ABC Evaluation
ü Autonomy: can be expressed within the task control

knowledge
ü Adaptability: agent flexibility is modeled within the task

control knowledge
ü Complexity: DESIRE provides tools for modeling

complex algorithms
§ Concurrency: this issue is not explicitly addressed
− Communication richness: no support for ACL, the

depicted communication is between components
− Distribution: this issue is not dealt with
− Mobility: this issue is not dealt with
− Security and privacy: this issue is not dealt with
− Openness: in DESIRE all components must be defined

explicitly, thus it can not be configured dynamically
EASSS 2002 Agent-Oriented Software

Engineering
122

DESIRE – SE Evaluation

ü Preciseness : provided via temporal logic
§ Accessibility: DESIRE has a wide range of modeling capabilities which

result in difficulty to learn and implement it
- Expressiveness: DESIRE is lacking in depicting computational algorithms
ü Modularity: supported via the component model
ü Complexity Management : hierarchical presentation supported within

task hierarchy and components
ü Executability: DESIRE has prototype generation capabilities
ü Refineability: DESIRE not assigned to a specific development stage,

however enables refinement at any stage
ü Analyzability: correctness and coverage are checked using formal

specification
ü Portability: at this stage DESIRE is coupled to its own architecture and

implementation

EASSS 2002 Agent-Oriented Software
Engineering

123

OPM/MAS – OPM General

n Object-Process Methodology (OPM) is an
integrated approach to the study and development of
systems in general and information systems in
particular.

n OPM unifies the system’s structure and
behavior throughout the analysis, design and
implementation of the system within one frame of
reference using a single diagramming tool -
the Object-Process Diagram (OPD) and
a corresponding, English-like language -
the Object-Process Language (OPL) .

EASSS 2002 Agent-Oriented Software
Engineering

124

OPM/MAS – OPM General
n Objects and processes are two types of equally important things

(entities) required to describe a system in a single, unifying
model

n At any point in time, each object is at some state. Object states
are transformed through the occurrence of a process

n Complexity is controlled through recursive and selective scaling
(zooming) of objects and/or processes to any desired level of
detail

n OPD is a visual formalism that captures both objects and
processes in the system along with the structural and procedural
relations among them

n The entire system is fully defined by the OPD-set -
a set of inter-related and consistent OPDs

n OPL provides a textual formalism alternative to the visual
formalism expressed by OPDs. It is declared by a context-free
grammar

EASSS 2002 Agent-Oriented Software
Engineering

125

OPM/MAS – Methodology Map

n OPM/MAS defines the different stages of
development as follows:
– Requirements

– Analysis
– Design

– Implementation
– Testing

n The core process of analysis and design is
done using a single framework of an OPDs
set

EASSS 2002 Agent-Oriented Software
Engineering

126

OPM Concepts

Object
Process

Structural Relationships Procedural Links

Characterization Event
Generalization Condition
Aggregation Agent
General Instrument

Effect
Result/Consumption

Invocation

Exception

Informational Essence Affiliation Instantiation States

e

c

e

EASSS 2002 Agent-Oriented Software
Engineering

127

OPM/MAS – Domain Level

n A Platform is a machine that hosts a program or a system

n An Agent is a software-based computer system with the autonomy, social
ability, reactivity and pro -activeness properties

n A Role is a socially expected behaviorpattern usually determined by an
individual's status in a particular society

n A Task is an assigned work often to be finished within a certain time

n An Object is an information entity

n An Ontology Term is information, which represents terms that might be
synonyms to a specific object or task

n An Interaction is a message. The message could be of one of the following
types: Web type, Agent type and System type

n Messaging is a process for handling the construction and understanding of
interactions

EASSS 2002 Agent-Oriented Software
Engineering

128

OPM/MAS – Domain Level

1 . . m

a

d

cb

e

f

EASSS 2002 Agent-Oriented Software
Engineering

129

OPM/MAS – Domain Level

n The domain level is a visual constraints
language

n It is defined via a set of OPDs that represents
the characteristics of the domain building
blocks and their relationships

n The OPDs used are either unfolding (for
characterization) or zooming-in (for detailed
constraints)

EASSS 2002 Agent-Oriented Software
Engineering

130

OPM/MAS – Domain Level

1 . . m

1 . . m
1 . . m

a

d

b

c

EASSS 2002 Agent-Oriented Software
Engineering

131

Auction Agent – Top Level

EASSS 2002 Agent-Oriented Software
Engineering

132

Zooming into the Auction Agent

EASSS 2002 Agent-Oriented Software
Engineering

133

Zooming into the Trader role

EASSS 2002 Agent-Oriented Software
Engineering

134

Zooming into the Searching task

EASSS 2002 Agent-Oriented Software
Engineering

135

Zooming into the Decision Making task

EASSS 2002 Agent-Oriented Software
Engineering

136

Zooming into the Bidding task

EASSS 2002 Agent-Oriented Software
Engineering

137

Unfolding of the System Information
Objects

EASSS 2002 Agent-Oriented Software
Engineering

138

OPM/MAS – ABC Evaluation

ü Autonomy: In OPM/MAS, the autonomy aspect is implemented by
encapsulating the agent activities within roles and the agent itself

ü Adaptability:In OPM/MAS the adaptability aspect is addressed via an
event mechanism

ü Concurrency: The concurrency aspect is addressed in OPM/MAS via the
invocation concept and graphical layout

ü Communication richness: In OPM/MAS special elements
handle the communication richness

ü Distribution: OPM/MAS supports the distribution aspect using the
Platform element

ü Openness: OPM/MAS does not require explicit specification of
all MAS participants. Generic modeling of unknown agents will
suffice

§ Mobility: The mobility aspect is not modeled explicitly,
however, it can be modeled using the core OPM expressive
power

§ Security and privacy: The security aspect is not modeled
explicitly, however, it can be modeledusing core OPM

§ Complexity: OPM/MAS supports computation complexity but
not logic reasoning complexity

EASSS 2002 Agent-Oriented Software
Engineering

139

OPM/MAS – SE Evaluation
ü Preciseness : OPM has clear semantics
ü Accessibility: OPM is highly accessible due to its single model approach and

scaling mechanisms (examined)
ü Modularity:OPM supports modularity of both objects and processes
ü Complexity Management : Complexity management mechanisms are integrated

into the OPM model

ü Refineability:OPM provides for refining of things within the OPM model and a
set of rules for converting the diagrams into an executable code

ü Analyzability: OPM is supported by CASE tools
ü Portability:OPM is a generic methodology, and is not coupled with any

programming language or architecture

§ Executability: OPM seems to have the capability of generating a complete
running application although this has not yet been fully implemented and tested

§ Expressiveness: OPM is highly expressive, however it is lacking in
human interface and knowledge representation aspects

EASSS 2002 Agent-Oriented Software
Engineering

140

Summary

n Multiple methodologies exist
n Agent-based system characteristics are well

supported
n Software engineering properties are supported

by some, to a limited extent
n It is necessary to select a specific methodology

according to its suitability to the domain and
function of the intended MAS application
– GAIA – social-oriented applications small-medium scale
– AUML – computational-based applications (e-commerce)
– DESIRE – knowledge-based applications
– OPM/MAS – computational-based applications (e-commerce)

141

Part 3

Implementation issues

EASSS 2002 Agent-Oriented Software
Engineering

142

Part 3: Outline

n Influence of implementation technology on
Analysis and Design

n Implementation issues:
– Implementing agents:

• Object-oriented tools;
• Agent-specific architectures.

– Implementing multiagent systems:
• Communication infrastructures;
• Coordination infrastructures;
• Institutions.

EASSS 2002 Agent-Oriented Software
Engineering

143

Issues in Implementing
Agents and Multiagent Systems
n How can we move from agent-based design

to concrete agent code?

n Methodologies should abstract from:
– Internal agent architecture;

– Communication architecture;

– Implementation tools.

n However, depending on tools the effort from
design to implementation changes:
– It depends on how much abstractions are close to

the abstractions of agent -oriented design.

EASSS 2002 Agent-Oriented Software
Engineering

144

Implementing Agents

n We have two categories of tools to implement
agents:
– Object-oriented tools: are very much related to the

object-oriented approach, e.g., frameworks;

– BDI toolkits: are based on the BDI model.

n The choice of the tool to adopt is hard and
there is no general answer:
– Performances;

– Maintenance;

– … and many other issues.

EASSS 2002 Agent-Oriented Software
Engineering

145

Object-Oriented Tools: JADE

n JADE (Java Agent
DEvelopment framework)
implements a FIPA platform. It:
– Is distributed across the

network in terms of containers;
– Provides management facilities,

e.g., RMA.
– Provides advanced

development facilities, e.g.,
Sniffer.

n The agent architecture is based on
behaviours that implement the tasks
of the agent:

– One agent runs in one thread;
– Cooperative scheduling of prioritized

behaviours.

n Different type of behaviours, e.g.:
– FSM;
– Cyclic.

EASSS 2002 Agent-Oriented Software
Engineering

146

Example – CD Seller
import musicShopOntology.*;
import ecommerceOntology.*;
…other imports
public class CDSeller extends Agent {
…declare private variables
protected void setup() {
…setup language and ontology
…create initial knowledge base
addBehaviour(new HandleRequestBehaviour(this));

}

class HandleRequestBehaviour
extends CyclicBehaviour {
public HandleRequestBehaviour(Agent a) {
super(a);

}
public void action() {
ACLMessage msg = receive(MessageTemplate.
MatchPerformative(ACLMessage.REQUEST));

try {
ContentElement ce =
manager.extractContent(msg);

Sell sell = null;
AgentAction toNotify = null;

if (ce instanceof Sell) {
sell = (Sell) ce; toNotify = sell

} else { …unknown action }

addBehaviour(new InformDoneBehaviour(
myAgent, toNotify));

} catch(Exception e) { e.printStackTrace(); }
}

}

class InformDoneBehaviour
extends OneShotBehaviour {
private AgentAction act;

public InformDoneBehaviour(Agent a,
AgentAction act) {
super(a); this.act = act;

}

public void action() {
try {
ACLMessage msg = new

ACLMessage(ACLMessage.INFORM);
AID receiver = new AID(receiver, false);

msg.setSender(getAID());
msg.addReceiver(receiver);
msg.setLanguage(codec.getName());
msg.setOntology(ontology.getName();
Done d = new Done(act);

manager.fillContent(msg, d);
send(msg);

} catch(Exception e) {
e.printStackTrace();

}
}

}

EASSS 2002 Agent-Oriented Software
Engineering

147

BDI Toolkits: ParADE

n ParADE (Parma Agent Development
Environment) is a toolkit for the development
of BDI FIPA agents.

n Agent level:
– Agents are atomic components;
– UML is used to build models of single agents and

of the multiagent system.

n Object level, exploits the generated code:
– Each agent is an object-oriented system;
– ParADE provides is a framework on top of JADE.

EASSS 2002 Agent-Oriented Software
Engineering

148

ParADE – Characteristics

n ParADE agents:
– Integrate reactive and goal-directed behaviours to

balance autonomy and efficiency;

– Exploit the FIPA ACL with a minimalist semantics.

n ParADE generates Java code from:
– Ontology diagram, models the part of the ontology

that support the communication;

– Architecture diagram, defines the architecture and
the interaction protocols.

EASSS 2002 Agent-Oriented Software
Engineering

149

Ontology and Architecture Diagrams

CD Shop
<<agent>>

Assistant
<<agent>>

CD

title : String
author : String

<<entity>>

has has

Price

value : int
price

Condition

cardNumber : long

<<entity>>

price

n Ontology diagram:
– Helper classes for entities, predicates and propositions;
– DAML+OIL model of the ontology.

n Architecture diagram:
– One skeleton class for each role;
– One abstract method for each action;
– Part of the capability descriptor associated with each protocol.

CD Shop

sell (cd : CD, assistant : Assistant, condition : Condition) : void

<<agent>>

Assistant
<<agent>> protocol:

FIPA Contract Net

FIPA Request

EASSS 2002 Agent-Oriented Software
Engineering

150

ParADE Agent Architecture

forever
wait for goals or for an action
in a plan

if not empty goals then
Goal g = choose a goal
Plan p = planner(g)
if not empty p then

activate p
else

Action next = perform
current action

if next exists then
schedule next

else
i f plan failed then

drop plan
else

assert the goal of plan

n BDI-like architecture with :
– Rules to assert and retract

beliefs and goals;
– A library of generic FIPA

interaction protocols;
– A planner.

n The planner supports
autonomy:
– Schedules actions and

communicative acts;
– Instantiates interaction

protocols;
– Assemble plans.

n Messages generates updates in
the knowledge base using the
semantics of the ACL.

EASSS 2002 Agent-Oriented Software
Engineering

151

Example – Song Seller
…ParADE imports
public class Shop extends ShopAgent {
protected void init() {
…set the agent model
Agent anyAgent = new AgentVariable("y");
Song anySong = new SongVariable("w");

// Plans to achieve intentions
// If 'anyAgent' requests for a song and the song is availab le, then execute 'ActionBody‘
plan(available(me, anySong), // precondition

done(sell(anyAgent, anySong)), // intention to ach ieve
new ActionBody() { // the action to pe rform to achieve the intention

public void body(Goal g) {
Done done = (Done)g;
Sell sell = (Sell)done.getAction();

sell.perform ();

forget(intend(sell.getAgent (), done));
achieved(done);

}
});

Song OneHeadlight = new ConcreteSong("One Headlight", 1000);
believe(available(me, OneHeadlight));

ConcreteAgent receiver = new ConcreteAgent(receiver);
schedule(inform(receiver, available(me, OneHeadlight)));

}
}

EASSS 2002 Agent-Oriented Software
Engineering

152

Implementing Multiagent Systems

n Inter-agent implementation aspects are
orthogonal to intra-agent ones
– Given a set of agents

• With internal architecture
• With specified interaction patterns

– How can we glue them together?
• Letting agents know each other

– How to enable interactions?
• Promoting spontaneous interoperability

– How to rule interactions?
• Preventing malicious or self-interested behaviours?

EASSS 2002 Agent-Oriented Software
Engineering

153

Multiagent Infrastructures

n Enabling and ruling interactions is mostly a
matter of the infrastructure

n The “middleware” layer supporting
communication and coordination activities
– Not simply a passive layer

– But a layer of communication and coordination
“services”

• Actively supporting the execution of interaction protocols
• Providing for helping agents move in unknown worlds
• Providing for proactively controlling, and possibly

influencing interactions

EASSS 2002 Agent-Oriented Software
Engineering

154

Influence of the Infrastructure on
MAS Analysis and Design

n Given that the infrastructure is somehow
“active”, what type of intelligence can it host?
– Are there computational activities that can be

delegated to the infrastructure?
• E.g., finding other agents, re-shaping topology of

interaction patterns, balacing load…
• Or must these activities be in agents themselves?

– How does this influence the design of a MAS?
• When designing agents, should we know what the

infrastructure can do?

n Engineering agents vs. engineering the
infrastructure

EASSS 2002 Agent-Oriented Software
Engineering

155

Influence of the Infrastructure:
Example

n In an auction
– One must avoid bidders to communicate

with each other, to prevent collusions

n Depending on the infrastructure
– Such control can be in charge of the

auctioneer agents
• It has to include additional interaction protocols

– Or it can be delegated to the infrastructure
• Lightening the role of the auctioneer

EASSS 2002 Agent-Oriented Software
Engineering

156

Communication vs. Coordination
Infrastructures

n Communication Infrastructures
– Middleware layer mainly devoted to provide

communication facilities
• Routing messages, facilitators, etc.
• FIPA defines a communication infrastructure

– Communication enabling

n Coordination Infrastructure
– Middleware layer mainly devoted to orchestrate

interactions
• Synchronization, and constraints on interactions
• MARS and Tucson are coordination infrastructures

– Activities ruling

EASSS 2002 Agent-Oriented Software
Engineering

157

Communication Infrastructure

n Agent in a MAS have to interact with each
other, requiring
– Finding other agents

• Directory services in the infrastructure keep track of
which agents are around, and what are their
characteristics (e.g., services provided)

– Re-routing message
• Facilitator agents (parts of the infrastructure) can

– receive messages to be delivered to agents with specific
characteristics, and re-route them

– Control on ACL protocols
• The execution of a single protocol can be controlled in

terms of a finite state machine

EASSS 2002 Agent-Oriented Software
Engineering

158

Example of Communication
Infrastructures: JADE (1)

n Implements a FIPA platform with all necessary services, e.g., DF.
n JADE:

– Is distributed across the network in terms of containers;
– Provides management facilities, e.g., RMA;
– Provides advanced development facilities, e.g., Sniffer.

JADE
Java Agent
DEvelopment
framework

EASSS 2002 Agent-Oriented Software
Engineering

159

Example of Communication
Infrastructures: JADE (2)

n Interaction protocols are
the FIPA way to
manage interactions.

n JADE provides support
for FIPA generic
interaction protocols,
e.g.:
– FIPA Contract net;
– FIPA English and Dutch

auctions.
n JADE implements

interaction protocols as
FSM behaviours.

EASSS 2002 Agent-Oriented Software
Engineering

160

Features and Limitations of
Communication Infrastructures
n There is not “application intelligence” in the

infrastructure
– The service provided are

• Of a very general-purpose nature
• Not re-configurable to meet the need of specific

applications

n There is no global MAS orchestration
– The only proactive control is on individual protocols

• There is no way of controlling and influencing the global
behaviour of a MAS

• How to control self-interested behaviour, unpredictable
dynamics, programming errors??

n This reflects in both advantages and
drawbacks in multiagent systems engineering

EASSS 2002 Agent-Oriented Software
Engineering

161

Software Engineering with
Communication Infrastructures
n All application problems are to be identified

and designed in terms of
– Internal agent behaviours and inter-agent

interaction protocols
– These include, from the intra-agent engineering

viewpoint:
• Controlling the global interactions
• Controlling self-interested behaviours

n Advantages:
– All in the system is an agents
– The engineering of the system does not imply the

engineering of the infrastructure
– A standard has already emerged (FIPA)

n Drawbacks:
– The design is hardly re-tunable
– Global problems spread into internal agents’ code

EASSS 2002 Agent-Oriented Software
Engineering

162

Coordination Infrastructures

n The infrastructure is more than a support to
communication
– It can embed the “laws” to which interaction must

obey
• E.g., to specify which agents can execute which

protocols and when

– It can control the adherence of the MAS behaviour
to the laws

• E.g., to prevent malicious behaviours

– Such laws can be re-configured depending on the
application problem

• E.g., English vs. Vickery auctions have different rules

EASSS 2002 Agent-Oriented Software
Engineering

163

Example of Coordination
Infrastructures: MARS (1)
n Agents interact via a set of localized shared

data space
• One data space for each MAS
• Or one data space for each Internet node

– Data spaces mediates all interactions
n Such interaction can be

– Stateless data exchanges
– Stateful execution protocols

• the data space acts as stateful repository of interaction
messages

n The data space is active and programmable
– It can proactively control and influence the

interactions
– On the basis of application-specific laws that can

be re-configured at run-time

EASSS 2002 Agent-Oriented Software
Engineering

164

Example of Coordination
Infrastructures: MARS (2)

n The data space can embed the
coordination laws
– Ruling, other than enabling,

interactions
n Global control on the behavior of

the MAS can be enacted
– Interaction actions can be

influenced and constrained
– Control of self-interested behaviour

and errors
n Ease of maintainance

– To change the behaviour of the
MAS, no need of changing agents,
only coordination laws

– e.g., from English to Vickery auction

Coordination

Laws

 Data space

Internet Node

Multi-Agent System

EASSS 2002 Agent-Oriented Software
Engineering

165

Example of Coordination
Infrastructures: Fishmarket

n Each agents in a MAS
– Is dynamically attached a controller module
– In charge of controlling its external actions

(i.e., protocol execution)

Multi- agent System

Agent

Controller

Agent

Agent

Agent

Coontroller

Controller

Controller

n Inspired by real-world
fish market auctions
n Fishers participate in

auctions by implicitly
respecting local rules

n There is an implicit
(institutional) control

EASSS 2002 Agent-Oriented Software
Engineering

166

Features and Limitations of
Coordination Infrastructure
n The infrastructure

– Provides for controlling the global behaviour of the
system

– Can be re-configured to specific application needs

n This introduces problems of
– In the case of open systems, is it correct to limit

agents’ autonomy by contraining their behaviour?
• Who controls who?

– Agents are no longer the only repository of
“intelligence”

• The infrastructure is intelligent, or at least active too
• Increase of complexity?
• Sholdn’t we consider the infrastructure as an additional

agent?

EASSS 2002 Agent-Oriented Software
Engineering

167

Software Engineering with
Coordination Infrastructure (1)
n Clear separation of concerns

– Intra-agent goals
– Global MAS goals and global rules of the

organizations
– Such separation of concerns has to reflect in

analysis and design

n Example: the Gaia methodology version 2
– explicitly tuned to open MAS
– implicitly assuming the presence of a coordination

infrastructure
• Identification of global organizational rules as a primary

abstraction in the software process

EASSS 2002 Agent-Oriented Software
Engineering

168

Software Engineering with
Coordination Infrastructure (2)

n Advantages
– Separation of concerns reduces complexity in

analysis and design
• Inter-agent issues separated from intra-agent ones

– Design for adaptivity perspective
• Agents and rules can change independently

– Intelligence in the infrastructure
• A trend in the scenario of distributed computing

n Drawbacks
– Implement both agents and infrastructural programs
– Agents are no longer the only active components of

the systems
• No longer homogeneous

– Lack of standardisation

EASSS 2002 Agent-Oriented Software
Engineering

169

Institutions
n May basic researches in the area of MAS

recognise that:
– Agents do not live and interact in a virgin world

• Agents live in a society, and as that they have to respect
the rules of a society

• Agents live in an organization, which can effectively
executed only in respect of organizational patterns of
interactions

n In general: Multiagent systems represent
institutions
– Where agents must conform to a set of expected

behaviour in their interactions
– Such an approach requires the introduction of a

conceptual coordination infrastructure during
analysis and design (as in Gaia v. 2)

EASSS 2002 Agent-Oriented Software
Engineering

170

Summarizing Implementation
Issues

n (intra) Agent Implementation
– Different architectures available (OO vs. BDI)
– The choice may depend on

• Ease of acceptance (OO easier to be accepted)
• Application (for intelligent agents, BDI eases implementation)

– The methodology should abstract from implementation
• Unfortunately, the design has to assume something about the

internals of agent, reflecting in implementation mismatches
n (inter) Multiagent Systems

– Communication vs. coordination architectures
• Intelligence reside only in agents or also in infrastructures?

– The choice may depend on
• Ease of design and maintainance vs. ease of implementation
• Designers attitudes

– However, institutions are a reality
• Currently requirea coordination infrastructure

171

Part 4

Research directions and
visions

EASSS 2002 Agent-Oriented Software
Engineering

172

Part 4: Outline

n Open and promising research directions
– Mobility & Ubiquity
– Emergent Behaviour: Dynamic systems &

Complexity
– Self-organisation
– Performance models
(note: no solution sketched, mostly problems ;-)

n Discussion

EASSS 2002 Agent-Oriented Software
Engineering

173

Mobility & Ubiquity

n The “Pervasive Computing” Umbrella
n Computing everywhere

– Enabled by small portable devices
– And low-costs wireless communications

n More than PDAs:
– Embedded computing-based sensors

• In cities, homes, cars, furnitures, clothes, bodies…
– Locally connected in a global network
– Huge amounts

• Dozens per persons, hundreds of billions in the world!
• May be in need of coordinating with each other!

EASSS 2002 Agent-Oriented Software
Engineering

174

Mobility & Ubiquity:
Engineering What?
n When billions of components may be

potentially involved:
– What does it mean to engineer a system?

• What is the system (intrinsinc openess)?
• How can we control it (who controls what)?
• How can we run it (the system is already and always

running)?

n Top-down approach impossible:
• Impossible to control the design of each component
• impossible to design and control the overall behavior of

the system by controlling the global outcomes deriving
from the interactions among its components

• Impossible to “halt” the systems, modify it, and run it
again accordingly to the new specifications

EASSS 2002 Agent-Oriented Software
Engineering

175

Bottom-up Engineering

n Starting from:
– Already available autonomous components

(agents)
– Interacting with each other
– In a dynamic environment

n How can we
– Say what the global behavior will be?
– Influence “by design” such global behavior so as

to guarantee that it will be as desired?
– Guarantee a specific behavior in spite of

environmental dynamics?
n Bottom up approches:

– The study of “emergent behaviours”
– In engineering: the “indirect control” of emergent

behaviors”
EASSS 2002 Agent-Oriented Software

Engineering
176

Example of Emergent Behaviors:
Cellular Automata
n Shows the influence

of environmental
dynamics with a very
simple model

n “Normal” cellular
automata
– State of simple cells

determined by
neighbour cells’ states
(3-D grid)

– No global patterns
emerge

EASSS 2002 Agent-Oriented Software
Engineering

177

Example of Emergent Behaviors:
Dissipative Cellular Automata

n When the environment influences the state of cells:
– Global structures emerge
– Dependingon the dynamics of the environment

• The amount of “energy” flowing from the environment
• Phenomenon similar to Prigogine’s “dissipative structures”

EASSS 2002 Agent-Oriented Software
Engineering

178

Controlling Emergent Behaviors
in Dissipative Cellular Automata

n By controlling a low percentage of cells
– It is possible to make any required pattern emerge

• Either by changing the internal behaviors of a limited set of cells
• Or by imposing a pre-determined state in a localized portions of

cells

n Do similar results apply to multiagent systems?
n How to organize them into a methodology?

EASSS 2002 Agent-Oriented Software
Engineering

179

Example: Indirect Engineering of
Mobility
n A multitude of “mobile agents” in an environment

– users, software modules, robots, etc…

n In need of orchestrating their movements
– Avoid traffic jams, load balancing, meeting, etc.

n How can we globally coordinate such movements?
– No control over each agent
– Almost impossible to have each agent know all the other

agents and decide where to go consequently:
• Computational costs unbearable: global optimization algorithms

too complex to be executed by each agent

• Communication costs excessive: each agent should negotiate
with the other agent its nect movement

• No Control: we cannot impose the execution of specific
algorithms or of specific communication protocols to agents

EASSS 2002 Agent-Oriented Software
Engineering

180

Engineering Mobility with Co-
Fields

n Global indirect control achieved
via the environment (i.e., the
infrastructure):
– The infrastructure should be able to

store and propagate simple (yet
effective) contextual information

• Determined by the position of the, as
if it were a “gravitational field”

• Suggesting agents on how to move

– Globally coordinated behaviors
achieved in a cheap way!

n Can similar approaches apply to
areas different from mobility?

n How to approach that in a
methodology?

Crowd Field

Building Plan

EASSS 2002 Agent-Oriented Software
Engineering

181

Towards Complex Systems
Engineering
n Traditional software systems :

– Assumes control over components

– Model software via formal systems

n Complex software systems :
– No control over components

– Requires different modeling approaches

n Novel modeling approaches:
– Dynamical systems

– Complex systems (self-organized criticality)

EASSS 2002 Agent-Oriented Software
Engineering

182

Dynamic Systems & Complexity

n Modeling software systems as made up of:
– “mechanical” components
– driven by environmental forces on the basis of observable

properties (e.g., masses or electrical charge)
– Moving in an abstract “phase space”

n Example: Co-Fields
– The global movements can be determined by simple

dynamical systems modeling
n General way of modeling still missing!

()

()









=
∂

∂
−=

=
∂

∂
−=

niyx
y

tyxCFv
dt
dy

niyx
x

tyxCF
v

dt
dx

ii
ii

ii
ii

,...,2,1,
),,(

,...,2,1,
),,(

PREY

PREDATOR

PREDATORPREDATOR

PREDATOR
PREDATOR

EASSS 2002 Agent-Oriented Software
Engineering

183

Self-Organized Systems

n Large systems of autonomous components organize
in specific topological structures
– Small worlds
– Power-law networks

n These systems are in a state of so called “self-
organized criticality”
– They live at the edge of chaos
– Exhibit peculiar dynamic properties

n Such general property applies to a large class of
computational (non-engineered) systems:
– Internet, Web, Gnutella

n Can a similar property impact on “engineered
systems” (as multiagent systems are)?
– It seems like it could (theory of highly optmized tolerance by

John Doyle)
– Worth to be investigated!

EASSS 2002 Agent-Oriented Software
Engineering

184

Performance Models for
Complex MAS
n What is “performance” in a complex MAS?

– Traditional perspective on performance:
• speed of execution, scalability, fault-tolerance

– Does not necessarily apply in MAS
• If execution is never ending, speed of execution

becomes irrelevant, or should by re-formulated
• Systems may be global by definition, so scalability may

be a pre-condition
• Autonomy of components and environmental dynamics

make execution unpredictable and inaccurate, so that the
concept of fault-tolerance should be re-formulated…

– Novel performance models may be required
• Delegation, trust, self-organization…

EASSS 2002 Agent-Oriented Software
Engineering

185

Adapting Performance Models
for MAS
n Speed of execution

– When MAS are forever running,speed of
execution must become

• Speed of reaction à to an event in the environment, to a
changed condition, to a request , to an

• How can such local properties can translate in global
properties of a MAS?

n Scalability
– When systems are immersed in a global world,

scalability must measure
• The capability of the system to grow w.r.t to what?

n Fault-tolerance
– A system that is imperfect by definition cannot

broke in an on-off way
• We must measure the degratation of a system
• Conversely, if the system can learn…

EASSS 2002 Agent-Oriented Software
Engineering

186

Need of Novel Performance
Models for MAS
n Autonomy & Environmental dynamics

– Performance of self-organizations
– How long does it take for a system to re-organize

– Does the the re-organized system preserve the
properties of the original one? How close?

n Trust
– We delegate agents and MAS to do something
– How much can we trust the behaviour of a MAS?

– We must measure reliability in delegation to sell
quality systems!

n Other performance issues we have missed?
– Very likely to exists….open issue!

EASSS 2002 Agent-Oriented Software
Engineering

187

CONCLUSIONS!

n In our humble opinion, agents will become the
dominant paradigm in software engineering
– AOSE abstractions and methodologies apply to a

wide range of scenarios

n Several assessed research works already exist
– Modeling work
– Methodologies
– Implementation Tools

n Still, there are a number of fascinating and
largely unexplored open research directions…
– Ubiquity, self -organization, performance….

188

Thank You!

Hope you enjoyed it!

Questions?

EASSS 2002 Agent-Oriented Software
Engineering

189

Contact Info

n Federico Bergenti
bergenti@ce.unipr.it
http://www.ce.unipr.it/people/bergenti

n Onn Shehory
onn@il.ibm.com
http://www.il.ibm.com

n Franco Zambonelli
franco.zambonelli@unimo.it
http://www.dsi.unimo.it/Zambonelli

190

Addendum

Selected References

EASSS 2002 Agent-Oriented Software
Engineering

191

Selected References

n Introductory to Agents and Multiagent
Systems

– A. Newell, “The Knowledge Level”, Artificial Intelligence, 18(1):87-127, 1982.

– P. Wegner, “Why Interaction is More Powerful than Algorithms”, C ommunications of
the ACM, 40(5):80–91, 1997.

– M. Wooldridge, “Reasoning About Rational Agents”, MIT Press, 2000.

– M. Wooldridge, N. Jennings, “Intelligent Agents: Theory and Practice”, The Knowledge
Engineering Review, Vol. 10, No. 2, 1999.

– D. Chess, C. Harrison, A. Kershenbaum , “Mobile Agents: are They a Good Idea?”,
Mobile Object Systems, Lecture Notes in Computer Science, No. 122 2 , Springer-
Verlag (D), pp. 25-45, February 1997.

– V. Parunak, “Go to the Ant: Engineering Principles from Natural Agent Systems ”,
Annals of Operations Research, 75:69-101, 1997.

– N. R. Jennings, "An Agent-Based Approach for Building Complex Software System",
Communications of the ACM, 44(4):35:41, 2001.

EASSS 2002 Agent-Oriented Software
Engineering

192

Selected References

n Agent Abstractions are Everywhere!
– F. Zambonelli, V. Parunak, “From Design to Intention: Signs of a Revolution” , 1st Joint

Conference on Autonomous Agents and Multi-agent Systems, Bologna (I), July 2002.

– A. Howard, M. J. Mataric, “Cover Me! A Self-Deployment Algorithm for Mobile Sensor
Networks”, International Conference on Robotics and Automation, 2002, to appear.

– B. A. Huberman, T. Hogg, "The Emergence of Computational Ecologies", in Lectures in
Complex Systems , Addison-Wesley, 1993.

– D. Estrin, D. Culler , K. Pister, G. Sukhatme , “Connecting the Physical World with
Pervasive Networks”, IEEE Pervasive Computing, vol. 1(1):59-69,Jan 2002.

– M. Ripeani, A. Iamnitchi , I. Foster, “ Mapping the Gnutella Network”, IEEE Internet
Computing , 6(1):50-57 , Jan .-Feb. 2002.

– M. Sipper. “The Emergence of Cellular Computing” , IEEE Computer, 37(7):18-26, July
1999.

– D.Tennenhouse, "Proactive Computing", Communications of the ACM, 43(5):43-50,
May 2000.

– F. Zambonelli, A. Roli, S. Gatti , “What Can Cellular Automata Tell Us About the
Behaviour of Large Multiagent Systems?, 1 st International Workshop on Large Multi-
Agent Systems, Orlando (FL), May 2002.

EASSS 2002 Agent-Oriented Software
Engineering

193

Selected References

n Introductory to AOSE
– N.R. Jennings, “On Agent-Based Software Engineering”, Artificial Intelligence,

117:227-296, 2000.
– N. R. Jennings, P. Faratin , T. J. Norman, P. O'Brien , B. Odgers, “Autonomous Agents

for Business Process Management” , Int. Journal of Applied AI, Vol. 14 (2), pp. 145-
189, 2000.

– M. J.Wooldridge and N. R. Jennings, "Software Engineering with Agents: Pitfalls and
Pratfalls", IEEE Internet Computing, Vol.3, No. 3, May-June 1999.

– Y. Shoham, “An Overview of Agent-Oriented Programming”, in J. M. Bradshaw, editor,
Software Agents, pages 271–290. AAAI Press / The MIT Press, 1997.

– K. Siau and M. Rossi, “Evaluation of Information Modeling Methods – A Review”,
Proceedinga 31st Annual Hawaii International Conference on System Sciences,pp.
314-322, 1998.

– F. Zambonelli, N. Jennings, M. Wooldridge, “Organizational Abstractions for the
Analysis and Design” , 1st International Workshop on Agent-oriented Software
Engineering, LNAI No. 1957, Springer , 2 0 0 1 .

EASSS 2002 Agent-Oriented Software
Engineering

194

Selected References

n Surveys on Methodologies
– C. Iglesias, M. Garijo , J. C. Gonzales, “A Survey of Agent-oriented Methodologies”,

Intelligent Agents V, LNAI No. 1555, 1999.

– M. Wooldridge , P. Ciancarini, “Agent-Oriented Software Engineering”, in Agent-
Oriented Software Engineering, LNCS No. 1957, 2001.

– O. Shehory and A. Sturm, “Evaluation of Modeling Techniques for Agent- Based
Systems ”, Proceedings of The Fifth International Conference on Autonomous Agents,
pp. 624-631, 2001.

n The GAIAMethodology
– M. Wooldridge , N. Jennings, D. Kinny,”The Gaia Methodology for Agent-Oriented

Analysis and Design”, Journal of Autonomous Agents and Multi-agent Systems, 3(3),
2000.

– F. Zambonelli, N. Jennings, M. Wooldridge, “Organizational Rules as an Abstraction for
the Analysis and Design of MultiagentSystems”, Journal of Software and Knowledge
Engineering, 11(3), 2001.

EASSS 2002 Agent-Oriented Software
Engineering

195

Selected References

n AUML
– B. Bauer, J.P. Muller, J. Odell , “ Agent UML: A Formalism for Specifying Multiagent

Software Systems ”, The International Journal of Software Engineering and Knowledge
Engineering, Vol. 11 (3), pp. 207-230, 2001.

n The DESIRE Methodology
– F. M. T. Brazier, B. Dunin- Keplicz, N. R. Jennings and J. Treur, “DESIRE: Modelling

Multi- Agent Systems in a Compositional Formal Framework”. Intl. Journal of
Cooperative Information Systems, Vol. 6, pp. 67-94, 1997.

n OPM/MAS
– Dov Dori, Object-Process Methodology - A Holistic Systems Paradigm, Springer

Verlag, Heidelberg, New York, 2002.
– O. Shehory and A. Sturm, “Evaluation of Modeling Techniques for Agent- Based

Systems ”, Proceedings of The Fifth International Conference on Autonomous Agents,
pp. 624-631, 2001.

EASSS 2002 Agent-Oriented Software
Engineering

196

Selected References

n Other Relevant Methodologies
TROPOS
– P. Bresciani , A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, “A Knowledge Level

Software Engineering Methodology for Agent Oriented Programming”, Proceedings of
the 5th International Conference o n Autonomous Agents , Montreal (CA), June 2001.

MASE
– S. A. DeLoach, M. F. Wood, C l . H . Sparkman , “Multiagent Systems Engineering”, The

International Journal of Software Engineering and Knowledge Engineering, Vol. 11 (3),
pp. 231-258, 2001.

MESSAGE

– G. Caire , F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon , P. Kearney, J.
Stark, P. Massonet, Agent Oriented Analysis using MESSAGE/UML”, 2 nd International
Workshop on Agent-Oriented Software Engineering, L N C SN o .2222, Springer-Verlag ,
pp. 119-135, 2001.

CommonKADS
– C. A. Iglesias , M. Garrijo , J. Gonzalez and J. R. Velasco, “ Analysis and Design of

Multiagent Systems using MAS-CommonKADS” , Intelligent Agents IV: Agent Theories,
Architectures and Languages, M. P. Singh, Anand Rao and M. J. Wooldridge, eds.,
LNCS 1365, Springer-Verlag , pp. 313-328, 1997.

EASSS 2002 Agent-Oriented Software
Engineering

197

Selected References

n Multiagent Systems Infrastructures
Communication (FIPA-based) Infrastructures
– F. Bellifemine, A. Poggi, G. Rimassa, “Developing Multi-Agent Systems with a FIPA-

Compliant Agent Framework”, Software Practice and Experience, 31 :103–128, 2001.
– S. Poslad , P. Buckle, and R. Hadingham, “The FIPA-OS Agent Platform: Open Source

for Open Standard”, available at http://fipa-os.sourceforge.net.

– P. Busetta , R. R önnquis t, A .Hodgson, A. Lucas, “JACK Intelligent Agents:
Components for Intelligent Agents in Java”, Agentlink News Letter, 1999.

Coordination Infrastructures
– P. Ciancarini, A. Omicini, F. Zambonelli, “Coordination Technologies for Internet

Agents”, Nordic Journal of Computing, 6(1), 2000.
– G. Cabri, L. Leonardi , F. Zambonelli , “Mobile-Agent Coordination Models for Internet

Applications”, IEEE Computer, Vol. 33, No. 2, February 2000.
– G. Cabri , L. Leonardi , F. Zambonelli , “Engineering Mobile Agent Applications via

Context-Dependent Coordination”, IEEE Trans. on Software Engineering, 2002.

Institutions
– P. Noriega, C. Sierra, J. A. Rodriguez, “The Fishmarket Project. Reflections on Agent-

mediated institutions for trustworthy E-Commerce”, 1 st Workshop on Agent Mediated
Electronic Commerce (AMEC -98), 1998.

– M. Esteva , J. A. Rodriguez-Aguilar, C. Sierra, P. Garcia, J. L. Arcos, “On the Formal
Specifications of Agent Institutions”, Agent-Mediated Electronic Commerce, LNAI No.
1991, 2001.

EASSS 2002 Agent-Oriented Software
Engineering

198

Selected References

n Open Research Directions & Visions
– F. Zambonelli, V. Parunak, “From Design to Intention: Signs of a Revolution” , 1st Joint

Conference on Autonomous Agents and Multi-agent Systems, Bologna (I), July 2002.
– V. Parunak, S. Bruekner, " Entropy and Self-Organization in Agent Systems ", 5th

International Conference on Autonomous Agents , ACM Press, May 2001.
– R. Albert, H. Jeong, A. Barabasi, “Error and Attack Tolerance of Complex Networks”,

Nature, 406:378-382, 27 July 2000.
– G. D. Abowd, E. D. Mynatt, “Charting Past, Present and Future Research in Ubiquitous

Computing” , ACM Transactions on Computer-Human Interaction, 7(1):29-58, March
2000.

– H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E. Rauch,
G. Sussman and R. Weiss, “Amorphous Computing”, Communications of the ACM,
43(5), May 2000.

– M. Mamei, F. Zambonelli, L. Leonardi, “A Physically Grounded Approach to Coordinate
Movements in a Team”, 1st International Workshop on Mobile Teamwork, Vienna (A),
IEEE CS Press, July 2002.

– A. Roli, F. Zambonelli, “What Can Cellular Automata Tell Us About the Behavior of
Large Multiagent Systems?”, 1 st International Workshop on Engineering of Large
Multiagent Systems ”, Orlando (FL), May 2002, to appear in LNCS.

– J. Doyle, J. M Carlson, “Highly Optimized Tolerance: A Mechanism for Power Laws in
Designed Systems ”, Physical Review Letters, 1999.

